

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

INVERSE SCATTERING OF A DISCRETE LOW LOSS MULTILAYER STRUCTURE USING DIGITAL SIGNAL PROCESSING (DSP) TECHNIQUES

By

Ahmed Mohamed Ahmed Hassan

B.Sc. in Electronics and Communications Engineering - Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science

in

Electronics and Electrical Communications Engineering

13

0/1/

Faculty of Engineering, Cairo University Giza, Egypt 2006

INVERSE SCATTERING OF A DISCRETE LOW LOSS MULTILAYER STRUCTURE USING DIGITAL SIGNAL PROCESSING (DSP) TECHNIQUES

By

Ahmed Mohamed Ahmed Hassan

B.Sc. in Electronics and Communications Engineering - Cairo University

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Electronics and Electrical Communications Engineering

Approved by the Examining Committee:
H-91 Hennawy
Prof. Dr. Hadia Said El-Hennawy, Member
M.Sl. Jaic
Prof. Dr. Mostafa El-Said Mostafa, Member
Prof. Dr. Essam A. Hashish, Thesis Advisor

Faculty of Engineering, Cairo University
Giza, Egypt
2006

INVERSE SCATTERING OF A DISCRETE LOW LOSS MULTILAYER STRUCTURE USING DIGITAL SIGNAL PROCESSING (DSP) TECHNIQUES

By

Ahmed Mohamed Ahmed Hassan

B.Sc. in Electronics and Communications Engineering – Cairo University

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Electronics and Electrical Communications Engineering

Supervised by

Dr. Essam A. Hashish Professor, Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University Giza, Egypt 2006

TABLE OF CONTENTS

LIST OF SYMBOLS	
LIST OF FIGURES	vii
LIST OF TABLES	хi
ACKNOWLEDGEMENTS	xvi
ABSTRACT	xvii
CHAPTER ONE: REVIEW OF INVERSE SCATTERING USING DSP TECHNIQUES	xviii
1.1 Objectives and Applications	
1.1.1 Ground Penetration Radar (GPR)	1
1.1.2 Breast Cancer Detection	2
1.2 Analysis Description	2
1.3 Thesis Organization	3
CHAPTER TWO: FAST FOURIER TRANSFORM (FFT) INVERSE SCATTERING	5
2.1 Algorithm Description	
2.2 Illustrative Example of 3-Layer Earth	7
2.3 Algorithm Analysis	10
CHAPTER THREE: THE Z-TRANSFORM INVERSE SCATTERING PROB (PHASE CONSIDERED)	11 LEM:
3.1 z-transform Inverse Scattering Algorithm for Lossless Non-Dispersive Dielectrics	
3.1.1 Structure	12
3.1.2 Analysis	12
3.2 Algorithms for the Forward Scattering Problem for Lossless Non-Dispersive Dielectrics	13 21
3.2.1 The Direct Division Algorithm	
3.2.2 The Backwards Levinson Algorithm	21
3.3 Algorithms for the Inverse Scattering Problem for Lossless Non-Dispersive Dielectrics	22 22
3.3.1 The Direct Division Algorithm	
3.3.2 The Levinson Algorithm	22
3.3.3 The Digital Filter Identification Algorithm	23
C	25

3.4 z-transform Inverse Scattering Algorithm for Lossy Non-Dispersive Dielectrics (Phase Considered): Analysis	27
3.5 Algorithms for the Inverse Scattering Problem for a Lossy Multilayer Structure (Phase Considered)	31
3.5.1 The Direct Division Algorithm	31
3.5.2 The Levinson Algorithm	32
3.5.3 The Digital Filter Identification Algorithm	32
3.6 Examples of the Inverse Scattering problem for a Lossy Multilayer Structure (Phase Considered)	33
3.7 Conclusion	2.4
CHAPTER FOUR: THE Z-TRANSFORM INVERSE SCATTERING PROBLEM (PHASE NEGLECTED)	34 1:
4.1 Introduction	35
4.2 Description of a Multilayer Lossy Dielectric Structure using an Asymmetric Transmission Matrix	36
4.3 Fictitious Asymmetric Lossy Layer Representation	20
4.4 Analysis of the Forward Scattering Problem	39
4.5 The Inverse Scattering Problem: Pre-analysis	41
4.6 The Inverse Scattering Problem	44
4.6.1 Method 1: Discrete Layer-Removal Formulas using Two-Sided Impulse Response	47 47
4.6.2 Method 2: Levinson Algorithm using Two-Sided Impulse Response	40
4.6.3 Method 3: Levinson Algorithm using One-Sided Impulse Response and Two Angles of Incidence	48 55
4.6.4 Method 4: Levinson Algorithm using One-Sided Bistatic {Transverse Electric (TE) and transverse magnetic (TM)} Impulse Response	60
4.7 Examples of the Inverse Scattering problem for a Lossy Multilayer Structure (Phase Neglected)	62
CHAPTER FIVE: THE WEIGHTED FOURIER TRANSFORM AND RELAXATI (WRELAX) TIME DELAY ESTIMATION ALGORITHM	ON
5.1 Objectives	68
5.2 Problem Formulation	08 70
5.3 The Basic WRELAX Algorithm	
5.4 The WRELAX algorithm for Band-Passed Signals with Real Valued Amplitudes	71 73

	:		:	÷	,
,		٠	•		

5.5 Analysis of the WRELAX Algorithm for Returns at Non-Integer Multiples of the Sampling Period	77
5.6 The Concept Behind the Modified WRELAX Algorithm	79
5.7 The Details of the Modified WRELAX Algorithm	 79
5.8 The Complexity of the Modified WRELAX Algorithm	81
5.9 Numerical Examples	82
5.9.1 Effect of Frequency	82
5.9.2 Effect of Standard Deviation (σ_t)	89
5.9.3 Effect the Signal to Noise Ratio (SNR)	95
5.10 Conclusion	97
CHAPTER SIX: HYBRID INVERSE SCATTERING WRELAX ALGORITHMS	
6.1 Preliminary	98
6.2 z-transform Inverse Scattering (Phase Considered) Analysis	99
6.2.1 Phase Detection	99
6.2.2 Hybrid WRELAX and Inverse Scattering Algorithm (Phase Considered)	105
6.2.3 Numerical Examples	106
6.3 Inverse Scattering Algorithm (Phase Neglected) Analysis	109
6.3.1 WRELAX and Inverse Scattering Algorithm (Phase Neglected) Hybrid	109
6.3.2 Numerical Examples	110
CHAPTER SEVEN: CONCLUSIONS AND SUGGETIONS FOR FUTURE WORK	118
APPENDIX A: MATHEMATICAL ANALYSIS OF THE WRELAX ALGORITHM FOR BOTH INTEGER AND NON-INTEGER RETURNS	121
APPENDIX B: GOLDEN SECTION SEARCH FOR MINIMUM DETECTION	126
REFERENCES	129