FUNCTIONAL TOXICOGENOMIC ANALYSIS FOR THE DETECTION OF GENOTOXICITY OF SOME ENVIRONMENTAL POLUTIONS

By

HEBA HASSAN HASSAN SALAH EI-DIN

B.Sc. Agric. Sc.(Genetics), Ain Shamus Univ.,(2010)

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Degree of

MASTER OF SCIENCE

in

Agricultural Sciences

(Genetics)

Department of Genetic Faculty of Agriculture Ain Shams University

تحليلات سمية جينومية لتحديد السمية الوراثية لبعض الملوثات البيئية

رسالة مقدمة من

هبه حسن حسن صلاح الدين بكالوريوس العلوم الزراعية (الوراثة) 2010

للحصول على ماجستير في العلوم الزراعية (الوراثة)

قسم الوراثة كلية الزراعة جامعة عين شمس

FUNCTIONAL TOXICOGENOMIC ANALYSIS FOR THE DETECTION OF GENOTOXICITY OF SOME ENVIRONMENTAL POLUTIONS

By

HEBA HASSAN HASSAN SALAH EL DIN

B.Sc. Agric. Sc. (Genetics), Ain Shamus Univ. (2010)

Under the Supervision of:

Dr. Fatthy Mohamed Abdel-Tawab

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Alia Ahmed El Seoudy

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Khaled Ibn El-Walid Fahmy

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

جامعة عين شمس كلية زراعة

رسالة ماجستير

اسم الطالب : هبه حسن حسن صلاح الدين

عنوان الرسالة : تحليلات سمية جينومية لتحديد السمية الوراثية لبعض

الملوثات البيئية

اسم الدرجة : ماجستير العلوم الزراعية (الوراثة)

لجنة الاشراف

د. فتحى محمد عبد التواب استاذ الوراثة المتفرغ قسم الوراثة، كلية الزراعة، جامعة عين شمس (المشرف الرئيسي)

د. عليه احمد السعودى استاذ الوراثة المتاذ الوراثة المتاذ الوراثة المتافرغ، قسم الوراثة، كلية الزراعة، جامعة عين شمس

د. خالد بن الوليد فهمى الوراثة، كلية الزراعة، جامعة عين شمس المستاذ الوراثة، قسم الوراثة، كلية الزراعة، جامعة عين شمس

تاريخ التسجيل الدراسات العليا

أجيزت الرسالة بتاريخ

ختم الإجازة

2017 / /

موافقة مجلس الجامعة

موافقة مجلس الكلية

2017 / /

2017 / /

Approval Sheet

FUNCTIONAL TOXICOGENOMIC ANALYSIS FOR THE DETECTION OF GENOTOXICITY OF SOME ENVIRONMENTAL POLUTIONS

By

HEBA HASSAN HASSAN SALAH EL-DIN

B. Sc. Agri. Sc., (Genetics), Ain Shams University, 2010

This thesis for M.Sc. degree has been approved by:
Dr. Mamdouh Kamel Amin Prof. Emeritus of Genetics, Faculty of Agriculture, Zagazig university
Dr. Eman Mahmoud Fahmy Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University
Dr. Alia Ahmed El Seoudy Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University.
Dr. Fatthy Mohamed Abdel-Tawab Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University

Date of Examination: 7 / 2 / 2017

صفحة الموافقة على الرسالة

تحليلات سمية جينومية لتحديد السمية الوراثية لبعض الملوثات البيئية

رسالة مقدمة من

هبه حسن حسن صلاح الدين بكالوريوس العلوم الزراعية (الوراثة)، جامعة عين شمس، 2010

للحصول على درجة الماجستير في العلوم الزراعية (الوراثة)

و قد تم مناقشة الرسالة و الموافقة عليها

د. ممدوح كامل أمين

أستاذ الوراثة المتفرغ، كلية الزراعة، جامعة زقازيق

د. إيمان محمود فهمي

أستاذ الوراثة المتفرغ، كلية الزراعة، جامعة عين شمس

د. عليه أحمد السعودي

أستاذ الوراثة المتفرغ، كلية الزراعة، جامعة عين شمس

أستاذ الوراثة المتفرغ، كلية الزراعة، جامعة عين شمس

د. فتحي محمد عبد التواب

أستاذ الوراثة المتفرغ، كلية الزراعة، جامعة عين شمس

تاريخ المناقشة: 7 / 2 / 2017

ABSTRACT

Heba Hassan Hassan Salah El-Din: Functional toxicogenomic analysis for the detection of genotoxicity of some environmental polutions, Unpublished Master Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2017.

Many chemicals compounds are added to foods and beverages to extend storage half - life or to enhance color, flavor, and texture. Food additives must be cleared by the US Food and Drug Administration (FDA) before being released into the food supply chains, and thorough testing is done on laboratory animals to determine any effects on cancer as part of this process. Sodium benzoate and Butylted Hydroxyanisole (BHA) are common additives which are usually present in very small quantities in food, and some are nutrients that may have beneficial effects. Saccharomyces cerevisiae is useful model for testing recommended concentrations (0.1 % for sodium benzoate and 0.02% for BHA) of food additives because of its partial homologous with human genome that reachs up to 46% and could, therefore, confer the expression of genes related to human cancer cells. A set of yeast knockout (YKO) strains representing a wide range of deleted genes were subjected to different concentrations of each of the two additives. After treatment, YKO strains and growth rate evaluated, treated human colon cancer cell line with the same concentration of both sodium benzoate and BHA and estimated the growth of those cell b via Neutral red uptaking technique. Real-time PCR is widely used for quantification of mRNA levels for gene expression of cancer-related genes in human colon cancer cells line after treated them by each of the two food additives. Comparison between data obtained from S. cerevisiae with those resulting from different human cancer cell lines revealed significant deletarious effects of the tested food additives on human health.

Key words:

Toxicogenomics, Food Additives, *Saccharomyces cerevisiae* gene knockout strains growth rates, Human cell lines, Sodium benzoate and Butylted Hydroxyanisole (BHA), Protein interaction

ACKNOWLEDGMENT

Firstly, I'd like to thank my God Allah, the greatest and almighty for give me the force and support during the master work.

I'd like to thank **Prof. Dr. Fatthy Mohamed Abdel-Tawab,** Professor Emeritus of Genetics, Genetics Dept., Fac. of Agric., Ain Shams University for designing a fantastic master plan which it's important for solving the recent and future of food industry problem.

I'd like to thank **Prof. Dr. Alia Ahmed El Seoudy**, Professor Emeritus of Genetics, Genetics Dept., Fac. Of Agric., Ain Shams University for her kind supervision and helping me either materially or morally.

I'd like to thank **Prof. Dr. Eman Mahmoud Fahmy**, Professor Emeritus of Genetics, Genetics Dept., Fac. Of Agric., Ain Shams University for her helping me either materially or morally.

I'd like to thank **Prof. Dr. Khaled Ibn El-Walid Fahmy**, Professor Genetics, Genetics Dept., Fac. Of Agric., Ain Shams University for his kind supervision and helping me either materially or morally.

I'd like to thank **Prof. Dr. Khaled Abdel Aziz**, Professor Genetics, Genetics Dept., Fac. Of Agric., Ain Shams University for his helping me either materially or morally.

I'd like to thank **Prof. Dr. Ahmed H. Abo_doma**, Professor Genetics, Genetics Dept., Fac. Of Agric., Ain Shams University for his helping me either materially or morally.

I'd like to thank **Prof. Dr. Ekram Salah El_Din Ahmed**, Professor Genetics, National Research Centre for her helping me either materially or morally (specially with knocked out yeast kit).

I'd like to thank **Dr. Sawsan El ateek**, Lecturer at Genetics, Genetics Dept., Fac. Of Agric., Ain Shams University for her kind supervision and helping me either materially or morally.

I'd like to thank **Dr. Nouh Aid**, Lecturer at Genetics, Genetics Dept., Fac. Of Agric., Ain Shams University for his kind supervision and helping me either materially or morally.

I'd like to thank **Dr. Mahmoud El mosallmy**, Lecturer at Genetics, Genetics Dept., Fac. Of Agric., Ain Shams University for his kind supervision and helping me either materially or morally.

I'd like to thank the group of Biochemical Genetic Laboratory specially; **Prof. Dr. Ahmed H. Abo_doma, Shereen khaled and Sara adel** for guiding and helping me.

I'd like to thank cytogenetics lab. "**Prof. Dr. El sayed Husseien**", **Professor Emeritus of** Genetics, Genetics Dept., Fac. of Agric., Ain Shams Univ. and special thanks to **Mona Moghazy.**

I'd like to thank the Molecular Genetics Lab "Pro. Dr. Mohamed Abd El-Salam", Professor Emeritus of Genetics, Genetics Dept., Fac. of Agric., Ain Shams Uni. and his group; Dr. Nouh Eid, Dr. Mahmoud Mossallamy, Hager Tarek and Hala Zoghly.

I'd like to thank **Basel Adel Nasser and Merna Hesham** for helping me.

I cann't express my feels to thank my parents and my brothers to enhance and encourage me.

CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	5
2.1. Yeast	5
2.1.1. Toxicogenomics	6
2.1.1.1.Toxicogenomics and Yeast	6
2.1.1.2. Toxicogenomics with Yeast knockout strains	7
2.1.1.3. Estimation of yeast growth by spectrophotometer	8
2.1.1.4. Estimation of yeast growth by spot platting	9
2.1.1.5. Yeast and Cancer	10
2.1.1.5.1. S. cerevisiae and Cancer	10
2.1.1.5.2. Genes related with cancer in <i>S.cerevisiae</i>	11
2.1.1.5.3. Several genes, related with cancer in <i>S.cerevisiae</i> which are homologous with human genes	13
2.1.1.5.3.1. <i>MLH1 as</i> human cancer gene	13
2.1.1.5.3.2. ALDH1 as human cancer gene	13
2.1.1.5.3.3. GLDC as human gene	14
1.1.5.3.4. RECQL as human cancer gene	15
2.1.1.5.3.5. USP22 as human gene	15
2.1.1.5.3.6. SIRT1 as human cancer gene	15
2.1.2. Food Additives	16
2.1.2.1. Food Additives and cancer	17
2.1.2.1.1. Sodium Benzoate and cancer	17

2.1.2.1.2. BHA and Cancer	18
2.1.2.2. Effect of food additives on human health	19
2.1.2.2.1. Sodium Benzoate on human health	19
1.2.2.2. BHA on human health	20
2.1.2.3. Effect of food additives on <i>S.cerevisiae</i> growth	20
2.1.2.3.1.Sodium Benzoate	20
1.2.3.2. BHA	21
2.2. Cell Lines	22
2.2.1. Cell Line and Cancer	22
2.2.1.1. Estimation of viability of cell by Neutral Red uptaking (NRU) assay	23 25
2.3. Estimation of expression of cancer genes with real-time	25
PCR	25
2.3.2. Cancer related genes	27
2.4. Protein-Protein interaction	28
2.4.1. Genetic interaction	28
2.4.1.1. Predication of gene interaction	28
2.4.2. Protein-protein interaction	29
2.4.2.1. Predication of protein-protein interaction	29
2.4.2.2. protein-protein interaction in <i>S. cerevisiae</i>	30
2.4.2.3. protein-protein interaction in human	30
III. MATERIALS AND METHODS	32
3.1. Materials	30

3.1.1. Yeast (Saccharomyces cerevisiae)	32
3.1.1.1 Materials for yeast growth	33
3.1.2. Cancer Cell Line	34
3.1.2.1.Materials needed for measuring cell viability of cell line by NRU	34
3.1.2.1.Materials needed for apoptosis assay	35
3.2. Methods	36
3.2.1. Bioinformatics	36
3.2.1.1. Selection of Knock out yeast strains	36
3.2.1.2. Primer design for Real Time PCR (RT-PCR)	36
3.2.1.3. Prediction of Protein-Protein interaction	37
3.2.2. Microbial Analysis	38
3.2.2.1. Activation of strains from kit stock	38
3.2.2.1.1. Isolation of single colony.	38
3.2.2.2. Activation of single colony strains	38
3.2.2.3. Treatment and measuring OD	39
3.2.2.4. Converting OD into viability %	39
3.2.2.5. Treatment and measuring spot platting	40
3.2.3. Human Cancer Cell Line	41
3.2.3.1. Measuring Cell Viability of Cell Line by NRU	41
3.2.3.2. Apoptosis Assay	43
3.2.4. Molecular Analysis	44
3.2.4.1. RNA extraction from cell line	44
3.2.4.2. cDNA Synthesis	45

VI. REFERENCES	86
V. SUMMARY	84
4.4. Molecular Analysis by RT-qPCR	78
4.3.2. Apoptosis assay	75
4.3.1.Estimation of Cell Viability of Colon Cell Line by Neutral Red Uptaking assay (NRU)	74
4.3.Cell Line Analysis	74
4.2. 2.Effect of BHA on YKO strains	67
4.2.1. Effect of Sodium Benzoate on growth rate and cancer genes with YKO strains	60
4.2.Microbial analysis	60
4.1.1. Prediction of Protein-Protein Interaction	58
4.1. Selection of yeast knocked out strains lacking genes which are homologous with human cancer genes	48
4. RESULTS AND DISCUSSIONS	48
3.2.4.3. Real-Time PCR Reaction	46

LIST OF TABLES

Table	Title	Page
No.		No.
1	Components of YPD medium (each component	
	prepared and sterilized separately)	33
2	List of medium with concentrations of sodium	
	benzoate treatment	33
3	List of medium with concentrations of BHA	
	treatment	34
4	Materials for applied Neutral Red Uptaking assay	34
5	Materials for applied apoptosis assay	35
6	Selected yeast proteins which matched with cancer-	
	related human proteins	36
7	Primer sequences used for real-time PCR	37