THE VALUE OF HUMAN GLUTATHIONE S-TRANSFERASES IN EARLY DETECTION OF CYSTIC FIBROSIS RELATED LIVER DISEASE

Thesis

Submitted in partial fulfillment for the M.D. in pediatrics

Presented by

Sally Kamal Ibrahim Ishak

(M.B., B. Ch.)

Supervision

Prof. Dr. Samiha Samuel Wissa

Professor of Pediatrics
Faculty of Medicine- Cairo University

Prof. Mortada El-Shabrawi

Professor of Pediatrics
Faculty of Medicine- Cairo University

Dr. Rania Mohamed Fawzy

Professor of Clinical pathology
Faculty of Medicine- Cairo University

Faculty of Medicine
Cairo University
2012

Acknowledgement

First of all thanks to GOD for all his gifts to me and for his support and great help to finish this work.

It is of great honor for me to work with Professor Dr. Samiha Samuel, Professor of Pediatrics, Faculty of Medicine, Cairo University. I feel great gratitude and appreciation for her expert guidance, valuable advice and helpful suggestions to deliver this work.

I would like to express my deep appreciation and gratitude to **Prof. Dr. Mortada El-Shabrawi**, Professor of Pediatrics, Faculty of Medicine, Cairo University, for his close supervision generous support and continuous encouragement.

I am deeply thankful to **Dr**. Rania Mohamed Fawzy, Professor of clinical pathology, Faculty of Medicine, Cairo University, for her kind advice and guidance.

Special thanks to **Dr. Rania**Mohamed Samy, Lecturer of clinical pathology, Faculty of Medicine, Cairo University, for her great help and sincere advice.

Many thanks to **Dr. Doaa Salah El-Gendy** in the unit of ultrasonography in pediatric hospital Cairo University, for her great help in doing ultrasound to all my patients

Dedication

To the soul of my father, to whom, I loved too much

To my mother, god saves her and gives her health and strength.

To my sister for her encouragement.

To my husband for his continuous support, patience and understanding

To my lovely two kids.

For all my professors

For all those who were Teaching and Backing me to reach Such a Stage of Education and Knowledge

Abstract

Objective: Cystic fibrosis (CF) is a genetic disease that typically produces symptoms of malnutrition and chronic respiratory infections and remains the most common life threatening autosomal recessive disorder in white population, with a frequency of about 1 in 2500 live births. For a long time, CF was thought to be a rarity among Arabs. Recently, case reports from several Arab countries have been published, sue. CF is caused by mutations in a single gene on the long arm of chromosome 7 encoding a protein called the CF transmembrane regulator (CFTR). The defect in CFTR leads to pathological changes in all organs with mucous secretory glands, e.g. airways, pancrease, gut, biliary tract, vas deferens and sweat glands. With increase life expectancy in patients with CF, liver manifestations complicating the clinical course of the disease have emerged as a significant medical issue and it is now considered the third leading cause of death in patients with CF. Besides improved survival, increased recognition of liver disease (LD) also has been fastened by substantial changes in follow up modalities our time, including more frequently resorting to laboratory determinations and ultrasonography. Children with CF are predisposed to liver disease because of the lack of a functional CFTR protein on the biliary epithelium. The characteristic hepatic histological lesion in CF is focal biliary fibrosis. It is probably due to the focal nature of the damage that the clinical signs arc few and overall hepatic function is preserved until the late stages. The prompt recognition of CF liver disease is now important because of the potential beneficial effects of treatment with ursodeoxycholic acid and the need to design trials of its prophylactic use.

Methods: In our study, we aimed to investigate the early evaluation of clinical, biochemical (mainly serum level of GST) and ultrasonographic features of liver disease in a group of children with CF and comparing them with 2 groups (hepatic group and controls). In a recent study as regard biochemical investigation, it was found that human glutathione- S- transferases (hGST) which are cytosolic detoxification enzyme accounting for about 3% of the cytoplasmic proteins in hepatocytes showed some rise indicating early liver damage. As regard ultrasonography, it was found that abnormal echogenicity was often found in the absence of biochemical and/or clinical disease. It was concluded that periodic ultrasonographic examination could be an early indicator of disease.

Results: As regard the serum level of GST enzyme (normal value about 2000-3000 U/L), the results revealed a highly significant difference between controls and (hepatic + CF) groups. As regard the ultrasongarphic changes among three groups, the results revealed a highly significant difference between controls and Hepatic + CF) groups. From these results we can confirm that GST is a sensitive value in early detection of liver affection in general with no specificity to CF patients.

Conclusion: serum GST with US scan of liver seem to be sensitive markers than transaminases for detection of liver affection in general with no specificity to CF patients, so we can use both of them to detect early liver affection in general included CFLD.

Key words:

(CF- CFTR- CFLD- Biliary fibrosis – GST- U/S)

CONTENTS

	Page
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	
CHAPTER (1): CYSTIC FIBROSIS	
Definition and etiology	3
 Incidence of CF 	4
Historical background	6
Genetics of cystic fibrosis	8
Inheritance of CFTR gene	16
 Pathogenesis of CF 	20
 Clinical manaifestations of CF 	33
Survival rate	58
 Diagnosis of CF 	59
Differential diagnosis	83
Treatment of CF	83 111
 Recent lines of treatment of CF 	111
CHAPTER (2): LIVER DISEASE IN CYSTIC FIBROSIS	125
Definition and incidence	125
 Pathogenesis of hepatobiliary disease in CF 	126
Risk factors	128
Clinical picture	128
• Diagnosis	140
Treatment	148

CHAPTER (3): VALUE OF GLUTATHIONE S-TRANSFERASE 152

ENZYME AND ULTRASONOGRAPHY IN DETECTION OF CFLD

 Ultrasonography 	152
Glutathione S-Transferase	157
PATIENTS AND METHODS	161
RESULTS	175
DISCUSSION	213
CONCLUSIONS AND RECOMMENDATIONS	225
SUMMARY	227
REFERENCES	230
ARABIC SUMMARY	

List of Abbreviations

△F508 Delta F 508

ABPA Allergic bronchopulmonary aspergillosis

ACC Acetylcysteine

ALT Alanine aminotransferase

AST Aspartate aminotransferase

ATP Adenosine triphosphate

C-AMP Adenosine monophosphate

CF Cystic fibrosis

CFAA Cystic fibrosis associated arthritis

CFLD or Cystic fibrosis related liver disease

CFRLD

CFRDM Cystic fibrosis related diabetes mellitus

CFTR Transmembrane conductance regulator

CL Chloride

CO2 Carbon dioxide

CPX 8-cyclopentyl-1,3-Dipropyl xanthin

CT Computed tomography scan

CVS Chorionic villus sampling

d Day

DHLA Dihydrolipoic Acid

DIOS Distal intestinal obstruction syndrome

DKA Diabetic ketoacidosis

DNA Dinuclutide aminotransferase

DNase Deoxy libonuclease

EC Enteric coated

EEG Electroencephalogram

ENac Epithelial sodium channel

ERCP Endoscopic retrograde cholangiopathy

FEV1 Forced expiratory volume in first second

FO2 Oxygen flow

FVC Functional vital capacity

G6PD Glucose -6-phosphate dehyrogenase

GGT 4-glutamyltransferase

GOR Gastroesophogeal reflux

GSSG Glutathione disulfide

GST Glutathione –s-stranferase

hGST Hyman glutathione-s-transferase

HPOA Hypertrophic pulmonary osteoarthropathy

HRCT High resolution CT

IL Interleukin

IRT Immunoreactive trypsin

IU International unit

IV Intravenous

IVIG Intravenous immunoglobulins

K Potassium

LD Liver disease

m Month

MC Mucous clearance

MRCP Magnetic resonance cholangiopancreatography

Na Sodium

NAL Nacystelyn

NSAID Non steroidal anti-inflammatory drugs

PD Potential difference

PEM Protein energy malnutrition

PET Pancreatic enzyme therapy

Ph Ph value

PHT Portal hypertension

PI Pancreatic insufficiency

PKA Protein kinase A

PS Pancreatic sufficiency

Ps.A Pseudo monas aeruginosa

RDA Recommended daily allowance

rhTrx Recombinant human thioredoxin

RNA Ribonucleotide aminotransferase

RV Residual volume

SaO2 Oxygen saturation

SLPI Secretory leukoprotease Inhibitor

TIPSS Transjugular intrahepatic porto-systemic shunts

TLC Total lung capacity

TNF Tumor necrosis factor

TRL Threonine, arginine, leucine

TrX Thioredoxin

U.S United state

U/S Ultrasonography

UDCA Ursodeoxy cholic acid

yr Years

 α -1AT Alpha-1 artitrypsin

List of table

		Page
Table (1):	Risks that a child will inherit cystic fibrosis	18
Table (2):	Organ involvement in cystic fibrosis	37
Table (3):	Manifestations of pulmonary exacerbations	39
Table (4):	Presentation of Cystic Fibrosis	59
Table (5):	Criteria for establishing the diagnosis of Cystic	60
	Fibrosis	
Table (6):	Indications for performing sweat chloride assay	61
Table (7):	Patients Who Should Be Offered CF Screening	68
Table (8):	Dosage of nebulized antibiotics at the Regional	90
	Cystic Fibrosis Unit, St. James's University Hospital.	
Table (9):	Guidelines for antibiotics treatment of pulmonary	94
	exacerbation in CF patient	
Table (10):	Nutritional requirements for patients with pancreatic	106
	insufficiency:	
Table (11):	Complications of therapy for CF	110
Table (12):	Presentations of liver disease in cystic fibrosis	140
Table (13):	Normal levels of liver span in relation to age.	142
Table (14):	Yearly blood tests recommended to identify liver	143
	disease in cystic fibrosis	
Table (15):	Second table shows William's U/S score for CF liver	144
	disease.	
Table (16):	Other investigations used in evaluation of CF liver	147
	disease	
Table (17):	Theoretical approaches to therapy for CF liver	148
Table (18):	A grading scheme for liver parenchymal appearance	154
	in CF at ultrasonography	
	•	

Table (19):	Second table shows William's U/S score for CF liver disease.	155
Table (20):	Normal levels of liver span in relation to age.	165
Table (21):	A grading scheme for liver parenchymal appearance in CF at U/S	173
Table (22):	William's U/S score for CF liver disease.	173
Table (23):	Demographic data of controls	175
Table (24):	Demographic data of hepatic patients	176
Table (25):	Demographic data of Cystic fibrosis patients	177
Table (26):	Clinical manifestations among controls in the form Complaint, History (present, past, family)	178
Table (27):	Clinical manifestations among hepatic patients in the form Complaint, History (present, past, family)	179
Table (28):	Clinical manifestations among cystic fibrosis patients in the form Complaint, History (present, past, family)	180
Table (29):	Clinical examination of Hepatic group	181
Table (30):	Clinical examination of Cystic fibrosis group	182
Table (31):	Laboratory results of Controls	183
Table (32):	Laboratory results of Hepatic patients	184
Table (33):	Laboratory results of cystic fibrosis patients	185
Table (34):	Ultrasonographic results of hepatic patients	186
Table (35):	Ultrasonographic results of cystic fibrosis patients	187
Table (36):	Age of patients and controls	189
Table (37):	Sex of patients and controls	189
Table (38):	Percentiles of weight in the three groups	190
Table (39):	Percentiles of height in the three groups	192
Table (40):	Different clinical presentations in the three groups	194

Table (41):	Developmental, immunological and nutritional history in the three groups	197
Table (42):	Similar conditions in the family history among the three groups	199
Table (43):	Clinical signs among the three groups	200
Table (44):	Hematological indices (CBC) among the three groups	202
Table (45):	Hematological indices (liver enzymes) among the three groups	204
Table (46):	GST enzyme (number of cases, level) among control and hepatic groups	207
Table (47):	GST enzyme (number of cases, level) among hepatic and CF. groups	207
Table (48):	GST enzyme (number of cases, level) among controls and CF. groups	208
Table (49):	Ultrasonographic changes among the three groups	210

List of Figures

		Page
Fig. (1):	Hypothesized Structure of CFTR	9
Fig. (2):	Categories of CFTR Mutations	16
Fig. (3):	How cystic fibrosis is inherited	17
Fig. (4):	Sweat ducts.	21
Fig. (5):	The pathogenesis of cystic fibrosis	23
Fig. (6):	Schematic representation of equipment for recording nasal	66
	PD and anterior view of right nasal cavity showing site of	
	measurements of PD	
Fig. (7):	Fine nodular-like densities distributed throughout both lung	73
	fields and more prominent centrally	
Fig. (8):	Extensive parahilar peribronchial infiltrate radiating lowards	73
	the periphery of both lung fields, associated with hilar	
	adenopathy	
Fig. (9):	Roentgenographic progression of CFLD from the diagnosis in infancy to 18yr. of age	74
Fig. (10):	Plain CT scan of the chest (lung window) at the level of upper lobes	76
Fig. (11):	Plain CT scan of the chest (lung window) at the level of	76
	lower lobes	
Fig. (12):	A neonate with abdominal distension and failure to pass	77
	meconium on day 1.	
Fig. (13):	A 2-year-old child with intermittent crying and constipation.	77
Fig. (14):	1-day-old girl with abdominal distension and failure to pass	77
	meconium.	
Fig. (15):	A 17-years -old boy presenting with subacute abdominal	78
	pain.	