ATHEROSCLEROTIC AORTIC ARCH PLAQUES IN ACUTE ISCHEMIC STROKE

Thesis

Submitted for Complete Fulfillment of The Master Degree (M.Sc.) in **Neuropsychiatry**

By

Heba Gamal Abdel-Rahman (M.B.; B.Ch., Cairo University)

Supervised By

Prof. Dr. Randa Shawki Deif

Professor of Neurology, Faculty of Medicine, Cairo University

Prof. Dr. Mohamed Ahmed El-Sayed

Assistant Professor of Neurology, Faculty of Medicine, Cairo University

Dr. Fouad Abdel-Monem Abdallah

Lecturer of Neurology, Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2008

بسم الله الرحمن الرحيم

II II

()

ACKNOWLEDGEMENT

First, and foremost, all thanks and gratitude to GOD, most gracious and most merciful.

I would like to express my deepest gratitude and sincere thanks to Prof. Dr. Randa Shawki Deif, Professor of Neurology, Cairo University, for her continuous guidance and valuable advice for enriching this work. I appreciate her great support for me, which has given me a powerful push helping this study to come to reality.

I am extremely grateful to Dr. Mohamed Ahmed El-Sayed, Assistant Professor of Neurology, Cairo University, for his continuous guidance and suggestions, saving no effort or time to make this work better.

I would like to express my highest appreciation to Dr. Fouad Abdel-Monem Abdallah, Lecturer of Neurology, Cairo University, for his great cooperation, assistance and efforts during the whole work without which, it wouldn't have been a reality.

My deepest gratitude and thanks to Prof. Dr. Loai Ezzat, Assistant Professor of Radiology, Cairo University and Dr. Hussein Heshmat Lecturer of Cardiology, Cairo University, for their sincere cooperation and continuous help throughout this work.

My deepest gratitude to my parents for their support and encouragement throughout my life.

TO MY FAMILY

Table of Contents

		Page
	List of abbreviation	I
•	List of Tables	IV
•	List of Figures	VI
•	Introduction	1
•	Aim of the Work	2
•	Review of literature:	3
	1. Acute ischemic stroke	3
	2. Anatomy of the aortic arch	23
	3. Aortic arch diseases and stroke	28
	4. Non-invasive imaging of aorta	41
	5. Invasive imaging of aorta	52
•	Subjects and Methods	60
•	Results	69
•	Case presentation	86
•	Discussion	93
•	Summary and Conclusion	104
•	Recommendations	108
•	References	109
•	Appendix	128
	Arabic Summary	

LIST OF ABBREVIATIONS

AAP : Atherosclerotic aortic plaques

AAT : Aortic arch thrombosis
ACA : Anterior cerebral artery

ACE : Angiotensin-converting enzyme
AHA : American Heart Association
APA : Antiphospholipid antibodies

ATH : Large-vessel extracranial or intracranial

atherosclerosis with stenosis

BP : Blood pressure

: Causative Classification of Ischemic Stroke

CE : Cardioembolism

CNS : Central nervous systemCT : Computed tomography

CTA : Computed tomography angiographyDSA : Digital subtraction angiography

ECA : External carotid artery
 ECG : Electrocardiogram
 ECM : Extra cellular matrix
 ECS : Endothelial cells

ELISA : Enzyme-Linked Immuno-Sorbent Assay

GCA : Giant cell arteritis

HIV : Human immunodeficiency virus

HTN : HypertensionHU : Hounsfield units

ICA : Internal carotid artery

IL-1 : Interleukin-1

IMT : Intima-media thicknessIUC : Infarct of uncertain causeLAA : Large-artery atherosclerosis

LAC : Lacunar

LACI : Lacunar infarcts

LDL : Low-density lipoprotein

LVH : Left ventricular hypertrophy

MCA : Middle cerebral artery

MCP-1 : Monocyte chemotactic protein-1

MDCTA : Multidetector row computed tomography

angiography

MES : Microembolic signal

MRA : Magnetic resonance angiographyMRI : Magnetic resonance imagingMSCT : Multislice computed tomography

NIHSS : National Institute of Health stroke scale

NO : Nitric oxide

OC : Acute stroke of other determined etiology
OCSP : Oxfordshire Community Stroke Project

ORG : Organan

P1 : Precommunicating
P2 : Postcommunicating

PACI : Partial anterior circulation infarcts

PCA : Posterior cerebral artery
PCR : Polymerase chain reaction
PDGF : Platelet-derived growth factor

PFO : Patent foramen ovale

POCI : Posterior circulation infarcts
PSV : Peak systolic blood flow velocity

PTT : Partial thromboplastin time

ROI : Region of interest

SAO : Small-artery occlusion

SMCs : Smooth muscle cells

SPAF : The Stroke Prevention in Atrial Fibrillation

TA : Takayasu arteritis

TAA : Thoracic aortic aneurysm

TACI : Total anterior circulation infarcts

TCCS: Transcranial Color-Coded Duplex Sonography

TCD : Transcranial Duplex

TEE : Transesophageal echocardiography

TEMRI: Transesophageal Magnetic Resonance Imaging

TGF-a : Transforming growth factor alpha

TIA : Transient ischemic attack

TMB : Transient monocular blindness

TNF : Tumor necrosis factor

TOAST: Trial of ORG 10172 in Acute Stroke Treatment

TTE : Transthoracic echocardiography

UND : Stroke of undetermined etiology

VA : Vertebral artery

VCAM-1 : Vascular cell adhesion molecule-1

LIST OF TABLES

Table	Title	Page
1	TOAST classification of subtypes of acute ischemic stroke	6
2	TOAST classification of high- and medium-risk sources of cardioembolism	7
3	Summary of features of TOAST classification of subtypes of ischemic stroke	8
4	Unusual causes of stroke in Sagrat Cor Hospital of Barcelona Stroke Registry	9
5	Risk factors among patients with first ischemic stroke by ischemic stroke subtype stroke Registry	14
6	Characteristics of atherosclerotic lesion types	29
7	Age and sex distribution of the study groups	69
8	Clinical and laboratory risk factors	71
9	Clinical presentation of patients in group I	72
10	NIHSS of patients in group I	72
11	Duplex findings in group I	73
12	Radiological data of the infarction in group I	74
13	CT angiography results in study groups	75
14	CT angiography detailed findings in study groups	76
15	TEE results in study groups	77

Table	Title	Page
16	TEE detailed results in study groups	78
17	Comparative results of CTA and TEE with sex	79
18	Comparative results of TEE and CTA with risk factors	80
19	Comparative results of TEE and CTA with size of infarction	81
20	Comparative results of TEE and CTA regarding +ve lesions	83
21	Comparative results of TEE and CTA regarding site of lesions	84
22	Comparative results of TEE and CTA regarding number of lesions	84
23	Comparative results of TEE and CTA regarding size of lesions	85
24	Comparative results of TEE and CTA regarding character of lesions	85

LIST OF FIGURES

Fig.	Title	Page
1	The arch of the aorta and its branches	24
2	Pathogenesis of atherosclerosis	31
3	Detector rows of MSCT	42
4	Moderate atherosclerosis of thoracic aorta with 3-mm	54
5	Shadowing (S) of calcified plaque	55
6	Risk factors in study groups	71
7	Size of infarction in CT brain	74
8	CT angiography results in both groups	75
9	TEE results in both groups	77
10	Results of CTA and TEE compared with sex	79
11	Results of CTA compared with size of infarction	82
12	Results of TEE compared with size of infarction	82
13	TEE study with heterogeneous plaque in the aortic arch (Case No. 1)	87
14	CTA study with multiple calcified plaques in the ascending and distal arch (Case No. 1)	87
15	TEE of the thoracic aorta showing single homogeneous plaque in the arch (Case No. 2)	89

Fig.	Title	Page
16	CTA of the thoracic aorta showing hypodense plaque penetrating the distal arch (Case No. 2)	89
17	TEE of the thoracic aorta showing heterogeneous plaque in the aortic arch (Case No. 3)	91
18	CTA of the thoracic aorta showing multiple calcified plaques in the aortic arch (Case No. 3)	91
19	CTA of the thoracic aorta showing single calcified plaque at the ostium of the left CCA (Case No. 4)	92

INTRODUCTION

Stroke is the leading cause of serious long-term disability, causing functional limitations. On average, someone has a stroke every 45 seconds and someone dies of stroke every 3 minutes. The risk of stroke increases with each decade of life (**Bates et al., 2007**).

The origin of cerebral infarction is undetermined in up to 40% of patients and an embolic origin is suspected in approximately 60% (Castellanos et al., 2001).

Aortic arch atheroma may be a source of thromboembolism to the cerebral circulation, or may simply be an index of the extent of arterial disease and therefore, the risk of stroke throughout the circulation. In some series, the aortic atheroma seems to be more common in patients who do not have an alternative explanation for their stroke (Macleod et al., 2004).

The ulcerated plaques at the aortic arch are independently associated with brain infarction of unknown cause and their association with stroke is particularly strong when the plaques are ≥ 4 mm in thickness (**Fujimoto et al., 2004**).

Screening of arch of aorta could be done using multislice computed tomography (MSCT) that significantly widens the scope of vascular CT imaging (Schoepf et al., 2003). It is seen as a potential alternative to current imaging methods for the assessment of vessel anatomy and atherosclerotic plaque composition and morphology in a great variety of arterial beds. This technique offers a wealth of new opportunities for quickly and accurately diagnosing suspected vascular diseases (Cordeiro and Lima, 2006).

AIM OF THE WORK

This study aims at finding out the presence, extent and shape of relevant atherosclerotic plaques in the aortic arch and their potential role as a source of embolism in patients with acute cerebral infarction of undetermined etiology using multislice computed tomography (MSCT).

CHAPTER I

ACUTE ISCHEMIC STROKE

Cerebral infarction is not a homogenous condition but can be categorized into several clinically distinct subtypes that differ in their pathogenesis and prognosis.

Categorization of subtypes of ischemic stroke has had considerable study, in the past, classifications have been based primarily on risk factor profiles, clinical features of the stroke and the findings on brain imaging using computed tomography or magnetic resonance imaging. Yet, clinical and brain imaging features overlap and are not specific for any particular subtype of ischemic stroke (Weisberg, 1988).

Patients are assigned to 4 major ischemic stroke categories based on National Institute of Neurological Diseases and Stroke Data Bank criteria (**Foulkes et al., 1988**).

1-Large-vessel extracranial or intracranial atherosclerosis with stenosis (ATH): Clinical features considered include prior TIA's in the same territory, stepwise increment of deficit without fluctuation, increments separated by more than three days in time, or signs of progressive brainstem ischemia. Sudden onset of stroke attributable to internal carotid occlusion is inferred thrombotic. CT changes involve infarction in the location of the "border zones" between the major cerebral arteries or cases with full anterior hemispheric infarction are consistent with atherosclerotic carotid occlusion or stenosis/thrombosis.