ANTAGONISTIC ACTIVITY OF SOME CHAETOMIUM SPECIES AGAINST COMMON BEAN ROOT ROT PATHOGENS

By

HUDA ZAKARIA AHMED ZOHER

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2003 M.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2011

A thesis submitted in partial fulfillment

Of

The requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Sciences (Plant Pathology)

Department of Plant Pathology
Faculty of Agriculture
Ain Shams University

2017

Approval Sheet

ANTAGONISTIC ACTIVITY OF SOME CHAETOMIUM SPECIES AGAINST COMMON BEAN ROOT ROT PATHOGENS

By

HUDA ZAKARIA AHMED ZOHER

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2003 M.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2011

This thesis for Ph.D. degree has been approved by:

Dr.	Elsaid Zaki Hassan Khalifa
	Prof. Emeritus of Plant Pathology, Faculty of Agriculture,
	Monufia University
Dr.	Madih Mohamed Aly
	Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain
	Shams University
Dr.	Mostafa Helmy Mostafa
	Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain
	Shams University

Date of Examination: / 2017

ANTAGONISTIC ACTIVITY OF SOME CHAETOMIUM SPECIES AGAINST COMMON BEAN ROOT ROT PATHOGENS

HUDA ZAKARIA AHMED ZOHER

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2003 M.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2011

Under the supervision of:

Dr. Mostafa Helmy Mostafa

Prof. Emeritus of Plant Pathology, Departmentof Plant Pathology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Saad Mohamed El-Gantiry

Head Research Emeritus of Plant Pathology, Plant Pathology Research Institute, Agricultural Research Center

Dr. Karima Gaber Helmy

Associate Prof. of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University

ABSTRACT

Huda Zakaria Ahmed: Antagonistic activity of some *Chaetomium* species against common bean root rot pathogens. Unpublished Ph.D. Thesis, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, 2017.

Different root rot fungi, i.e. Rhizoctonia solani, Fusarium solani and *Macrophomina phaseolina* in addition to the Oomycete pathogen Pythium sp. were isolated from bean plants showing root rot syndromes collected from Giza and Qalyubiya governorates. Pathogenicity tests ofroot rot pathogens on bean (Giza 6) were carried out. All tested isolates were found to be pathogenic to bean plants. Fourteen isolates of Chaetomiumspp. were collected from Mycology Res. Dept. and 19*Chaetomium*isolateswere isolated from different plant hosts. Chaetomiumisolates were identified based on morphological and molecular characterization and werebelonged to 7 species namely; C. *C*. bostrychodes, C.madrasense, C. brasiliense. globosum, atrobrunneum, C. nigricolorandC. megalocarpum. Some isolates of Chaetomiumspp. enhanced the germination ofbeen seeds. Thirty three isolates of *Chaetomium* spp. suppressed the radial growth of root rot pathogens. T he mode of action of *Chaetomium* isolatestowards root rot pathogensvaried, some isolates suppressed the growth of the pathogens while some others showed mycoparasitism behaviour. Microscopical observation of antagonistic areas on petri dishes showed lysis of pathogens' mycelia due to over growth penetration through hyphal pegs and coiling by *Chaetomium*. Scanning Electronic microscope showed that C. globosum was able to penetrate from different sites of one compartment of R. solani hyphae. In addition, cytoplasm and protoplast membrane of hyphal cells of R. solani was broken down and organelles were no longer discernible in the highly altered cytoplasm. All partially purified culture filtrates of *Chaetomium* spp. isolates caused reduction of mycelia dry weight of root rot bean pathogens. Fourteen isolates of Chaetomium produced β-glucanases and chitinase during interaction with

the pathogens. Volatile metabolites of ethyl acetate extract of 3 different isolates of C. globosum were determined using Gas chromatography— Mass spectrometry (GC-Mass) which revealed the presence of various metabolites. The main constituents were Propionic Benzenedicarboxylic acid, 1-Hexadecene, 5-Octadecene, Hexanoic acid, Indole-3-acetic acid. Five different isolates of Butanoic acid, and Chaetomium were chosen to study their potentiality in controlling R. solani and M. phaseolina in vivo. Five different isolates of Chaetomium were chosen to study their potentiality as control measures against R. solani and M. phaseolina in vivo. All isolates of Chaetomium spp. showed effectiveness in controlling pre-emergence damping-off and completely suppressed post-emergence damping-off. C. globosum1 was the best bioagent affected on shoot and root dry weight, followed by C. globosum2. C.atrobrunneum3, C. globosum3 and C. madrasense5, the increase was significant comparing with control. Three different composts and straw were used with C. globosum1 to study their effects on efficiency of *Chaetomium* in controlling root rot. Compost A and straw gave the best reduction in bean root rot disease when combined with C. globosum. Compost A with C. globosum1 gave the best effect on dry weight of shoot and root of bean plants.

Key words: Chaetomium spp. morphology and molecular characterization, bean root rot, mycoparasitism, Gc-Mass, β -glucanases and chitinase and Compost and straw effect.

ACKNOWLEDGMENT

Praise and thanks to Allah, who guided and helped us to achieve this work

First I would like to express my deepest gratitude to **Prof. Dr. Mostafa Helmy Mostafa**, Professor Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University for his continuous, generous support, kind help,inspiration all the time, follow up and constructive ideas and advice.

I would like also to thank **Dr. Saad El-Gantiry**, Professor Emeritus, Mycology Res. & Disease Survey Dept., ARC, for his kind supervision, valuable assistance, moral and faithful attitude during the preparation of this manuscript.

I also wish to thank **Dr. Karima Gaber Helmy**, Associate Professor of Plant Pathology, Faculty of Agriculture, Ain Shams University for her kind help, valuable suggestions and valuable help throughout my thesis.

May Allah be mercy of **Professors Dr. Dorya I. Harfoush** Professor Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University **and Dr. Ebtisam El-Sherif**, Chief Researcher, Mycology Res. & Disease Survey Dept., ARCfor their supported and kind help

Special thanks are also due to all **Members of Department of Mycology Res. & Disease Survey**for their cooperation, guidancesince my first steps in the field of scientific research and for their support and encouragement

My gratitude is also due to all the professors and lecturers at Plant Pathology Dept. Faculty of Agric., Ain Shams University, for sharing their knowledge and experience with us.

Finally, my deepest and sincere appreciations are due to **My Parents**, my sisters **Hadel** and **Heba** and my brother **Ahmed** for their patience, support and encouragements all over my life.

CONTENT

	LIS	ST OF TABLE.	III
	LIS	ST OF FIGURES.	IV
I.	IN	TRODUCTION.	1
II.	RE	VIEW OF LITERATU.	3
III.	MA	ATERIALS AND METHODS.	26
IV.	RF	ESULTS.	41
	1.	Isolation and identification of bean root rot pathogens.	41
	2.	Pathogenicity test of different fungi isolated from	
		diseased bean plants.	41
	3.	Source, maintenance and storage of Chaetomium	
		isolates.	44
	4.	Morphological characterization of Chaetomium spp.	
		isolates.	46
	5.	Phylogenetic analysis.	64
	6.	Effect of some isolates of Chaetomium spp. on seed	
		germination.	68
	7.	Effect of different isolates of <i>Chaetomium</i> on the linear	
		growth of bean root rots pathogens.	68
	7.1	Dual culture test on petri plates .	69
	7.1	.1 Effect of pathogen's hyphae in the areas of antagonism	
		on its pathogenicity.	70
	8.	Effect of different isolates of Chaetomium on of bean	
		root rots pathogens.	77
	8.1	Dual culture test on Petri plates.	77
	8.2	Behavior of <i>Chaetomium</i> spp. with bean root-rot	
		pathogen under soil condition.	79
	8.3	Transmission electron microscopy.	80
	9.	Effect of culture filtrate of some isolates of	
		Chaetomium on mycelium growth of R. solani and M.	
		phaseolina (dry weight).	83

	10. Effect of partially purified culture filtrate of some	
	isolates of Chaetomium on the linear growth of root rot	
	pathogens.	85
	10.1 Effect of partially purified cultural filtrates of	
	Chaetomium spp. isolates on morphological features	
	of bean root-rot pathogens.	86
	10.2 The action of mycelium grown from malformed	
	mycelium on its pathogenicity on bean seeds.	86
	11. Detection of Chitinase producing by different isolates	
	of Chaetomium spp. dyeing of basal chitinase detection	
	medium.	91
	12. Glucanase and Chitinase assessment in culture filtrate	
	and biomass of M. phaseolina.	95
	13. Glucanase and Chitinase assessment of culture filtrate	
	and biomass of R. solani.	97
	14. Separation of chemical compounds of partially purified	
	culture filtrate of <i>Chaetomium globosum</i> by GC-mass.	99
	15. Effect of some Chaetomium spp. isolates on bean	
	damping-off disease in vivo.	106
	16. Effect of some <i>Chaetomium</i> isolates on dry weight of	
	bean.	107
	17. Effect of different types of composts and straw on the	
	efficiency of C. globosum in controlling root rot of	
	bean.	108
V.		112
VI.		117
VII.	REFERENCES.	123
	ARABIC SUMMRY.	

LIST OF TABLES

No.		Page
1	Compost analysis.	40
2	Isolates associate with bean root rot pathogens isolated	
	from infected bean plants in two governorates.	41
3	Pathogenicity test of different fungi on bean plants (cv.	
	Giza 6) recorded as pre-emergence and post emergence	
	damping off.	42
4	Sources of <i>Chaetomium</i> isolates .	45
5	Standard isolates obtained from Gene Bank used in the	
	phylogenetic analysis.	64
6	Accession number of Chaetomium spp. in GenBank.	66
7	Effect of Chaetomium spp. on the linear growth of root	
	rot pathogens.	70
8	Effect of partially culture filtrate of some isolates of	
	Chaetomium on mycelium growth of R. solani and M.	
	phaseolina (dry weight).	83
9	Effect of partially purified culture filtrate of some	
	isolates of Chaetomium on the linear growth of root rot	
	pathogens.	86
10	Chitinase activity assessment by different isolates of	
	Chaetomium spp. in vitro.	91
11	Assessment Glucanase activity in culture filtrate and	
	biomass of Chaetomium spp. isolates grown on cell	
	walls of M . phaseolina after 15 days from incubation (μ	
	moles of glucose \ min).	94
12	Assessment Chitinase activity in culture filtrate and	
	biomass of Chaetomium spp. isolates grown on cell	
	walls of M . phaseolina after 15 days from incubation (μ	
	moles N-acetyl glucosamine mg/ml).	95

13	Assessment Glucanase activity in culture filtrate and	
	biomass of Chaetomium spp. isolates grown on cell	
	walls of R. solani after 7 days from incubation (μ moles	
	of glucose \ min).	96
14	Assessment Chitinase activity in culture filtrate and	
	biomass of Chaetomium spp. isolates grown on cell	
	walls of R. solani after 7 days from incubation (µ	
	moles N-acetyl glucosamine mg/ml).	97
15	Determination chemical compounds of partially	
	purified culture filtrate of C. globosum 1 by GC-mass.	99
16	Determination chemical compounds of partially	
	purified culture filtrate of C. globosum 2 by GC-mass.	100
17	Determination chemical compounds of partially	
	purified culture filtrate of C. globosum 7 by GC-mass.	102
18	Effect of some Chaetomium isolates on the control of	
	bean damping-off disease in vivo recorded at 15* and	
	30** days after sowing.	105
19	Effect of some Chaetomium isolates on dry weight of	
	bean.	107
20	Effect of different types of composts and straw on the	
	efficiency of C. globosum1 in controlling bean	
	damping-off disease.	109
21	Effect of different types of composts and straw on the	
	efficiency of C. globosum1 on dry weight of bean.	111

LIST OF FIGURES

No.		Page
1	M. phaseolina, dry rot of the stem . Small black dots	
	develop in the dead areas.	43
2	R. solani, sunken reddish-brown lesions develop on roots	
	and stems below the soil line.	43
3	F. solani, slightly reddish discoloration on the tap root the	
	red color change to a dark brown and the lesions frequently	
	cracked longitudinally.	44
4	Morphology of different Chaetomium spp.	47
5	Growth of Chaetomium atrobrunneum colony	
	characteristics on PDA amended with pieces of filter	
	paper.	48
6	Chaetomium atrobrunueum under light microscope.	49
7	Growth of Chaetomium bostrychodes colony	
	characteristics on PDA amended with pieces of filter	
	paper.	50
8	Chaetomium bostrychodes under light microscope.	51
9	Growth of Chaetomium brasiliense colony characteristics	
	on PDA amended with pieces of filter paper.	52
10	Chaetomium brasiliense under light microscope.	53
11	Growth of Chaetomium globosum colony characteristics on	
	PDA amended with pieces of filter paper.	55
12	Chaetomium globosum under light microscope.	56
13	Growth of Chaetomium madrasense colony characteristics	
	on PDA amended with pieces of filter paper.	57
14	Chaetomium madrasense under light microscope.	58
15	Growth of Chaetomium megalocarpum colony	
	characteristics on PDA amended with pieces of filter	
	paper.	59

16	Chaetomium megalocarpum under light microscope.	60
17	Growth of Chaetomium nigricolor colony characteristics	
	on PDA amended with pieces of filter paper.	61
18	Chaetomium nigricolor under light microscope.	62
19	Phylogenetic tree, using the neighbour-joining method, of	
	representatives of Chaetomium spp. Bootstrap values	
	calculated from 1000 replicates are included at the	
	branches.	65
20	Phylogenetic tree, using the neighbour-joining method, of	
	representatives of Chaetomium spp. comparing with	
	morphological characterization.	67
21	Effect of some isolates of Chaetomium spp. on seed	
	germination.	68
22	Effect of <i>Chaetomium</i> spp. on growth reduction of root rot	
	pathogens.	71
23	The effect of different isolates of <i>Chatomium</i> spp. on	
	suppressing mycelial growth of root rot bean pathogens.	72
24	The effect of different isolates of <i>Chaetomium</i> spp. on	
	suppressing the aggressiveness of bean root-rot pathogens.	74
25	The effect of C. globosum 1 on hyphae of F. solani,	
2 -	R.solani and M. phaseolina.	77
26	Re-isolated from soil infested with C. globosum1and on	70
27	hyphae of R. solani.	79
27	TEM observations: Effect of <i>C. globosum</i> 1 on hyphae of	0.1
20	R.solani by TEM.	81
28	TEM observations: Hyphae of <i>R. solani</i> untreated with <i>C.</i>	92
20	globosum 1. Effect of culture filtrete of Chapterium and on myselium	82
29	Effect of culture filtrate of <i>Chaetomium</i> spp. on mycelium dry weight of root rot pathogens.	84
20	Effect of partially purified culture of some isolates of	04
30		
	Chaetomium spp. on the linear growth of root rots pathogens.	87
	paniogens.	0/

31	Effect of partially purified culture filtrate of C. globosum 1	
	on the phytopathogenic fungi i.e. R. solani and M.	
	phaseolina.	88
32	Morphological features of phytopathogenic fungi i.e. R.	
	solani due to cultural filtrates of C. globosum 1.	88
33	Effect of mycelium grown from malformed mycelium on	
	the pathogenic capacity of root rot pathogens. A,	
	Malformed mycelium of M. phaseolina affected with C.	
	globosum 1 . B, Malformed mycelium of M. phaseolina	
	affected with C. madrasense1. C, Malformed mycelium of	
	R.solani affected with C. globosum 1.	89
34	Detection of Chitinase producing by different isolates of	
	Chaetomium spp. dyeing of basal chitinase detection	
	medium. Data recorded after 3 week depended on	
	changing of dye bromocresol purple to color-bound	
	complex (Yellow). Con= control PDA with bromocresol	
	purple without inoculated with Chaetomium, A= purple	
	pale, B= Mycelium growth with perithecium formed but	
	without change color dye, C yellow with pale purple, D= yellow	
	with slightly purple, D= yellowish white and F= wholeness	
	yellow.	93
35	GC-Mass of partially purified cultural filtrates of <i>C</i> .	
	globosum 1.	104
36	GC-Mass of partially purified cultural filtrates of <i>C</i> .	
	globosum 2.	104
37	GC-Mass of partially purified cultural filtrates of <i>C</i> .	
	globosum 7.	104
38	Effect of some <i>Chaetomium</i> isolates on bean planted after	
	15 days after sowing.	106
39	Effect of some <i>Chaetomium</i> isolates on bean planted after	
	30 days after sowing.	106

40	Effect of C. globosum1 with different compost on shoot	
	and root of bean:- comp A:- compost A ,comp B:-	
	compost B, comp C:- compost C,ch:- C. globosum1 and	
	con:- control without C. globosum, compost and straw.	110
41	Effect of using different types of composts and straw on	
	the efficiency of C. globosum1 in controlling root rot of	
	bean.	111

INTRODUCTION

Snap beans (*Phaseolus vulgaris* L.) are the most important grain legume for human consumption (**Broughton**, *et al.* 2003). Bean is one of the major sources of calories, protein, dietary fiber, minerals and vitamins (**Perla**, *et al.*, 2003 and **Hillocks**, *et al.* 2006).

In Egypt, It's considered as annually crop, beans grow for green bean and dry bean. Production of green bean was 253.1 ton while, production of dry bean was 100.9 ton(FAO, 2014).

Green bean is one of the most important vegetable crops grown in Egypt, and occupies a great part of local consumption and export. The cultivate area of bean in Egypt is 2.4% of the total world cultivated area, producing about 3.5% of the total world production of bean (**El-Noemani**, *et al.* **2010**).

Damping-off disease is considered animportant and persistent problem of bean plants (Wen, et al. 2005). Bean root-rot diseases are caused by several pathogens, i.e. Fusarium solani, Rhizoctonia solani, Macrophomina phaseolina and Sclerotium rolfsii (Siddiqui, et al.2001). Root-rot diseases appear during the growing season at different stages of plant growth (Abdel-Kader, 1997).

Plant disease control depends mainly on fungicides. Hazards of the usage of fungicides are well known either on the environment or on the living organisms (**Rauf**, 2000). Some cultural practices, *i.e.* crop rotation, fertilizers and irrigation were suggested to be used for plant disease control. However, they didn't give substantial positive effect in disease management (**Manners**, 1993). Biological control using antagonistic microorganisms proved to control various plant diseases (**Li**, *et al.*1997)

Chaetomium Kunze (Ascomycota, Chaetomiaceae) is an ascomycete genus includes more than 350 saprophytic species (**Zhang**, *et al.* **2012**). They are isolated from soil and organic compost (**Soytong and**