Cairo University

Faculty of Archaeology

Conservation Department

Experimental Studies on the Effect of Some Burial Environments on Bone Properties and Their Methods of Treatments with the Application on Some Archaeological Bones

By

Hanan Elsayed Elaraby Ahmed Kira

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Arts

In

Conservation Science

Supervision Committee

Prof. Gomaa Mohamed Mahmoud Abdel-Maksoud

Prof. of Conservation,
Conservation Department,
Faculty of Archaeology,
Cairo University

Prof. Ali Abdel-Motelib Ali

Prof. of Geology, Geology Department, Faculty of Science, Cairo University

Summary

Bones artifacts are found a lot in museums store and excavation sites once the bone has discarded, it goes through different processes. These processes separated into two different categories: intrinsic and extrinsic factors. The intrinsic factors are those that take place within the bone. The extrinsic factors are those based on the environment surrounding the bone. Deterioration of bones in different types of soil depends on the type of soil and pH level in it. The bones in sandy soil were less distorted. In clayey soil the combination of high soil acidity, poor drainage, and heavy compaction produces rapid degradation of bones. Bones preservations in gravels depend on the acidity and permeability, and on whether the deposit in an aerobic and waterlogged. Bones in salty soil contain soluble salts, ground water and seawater can carry these salts into the pores of the artifact during burial leaving them behind when the water evaporates. Preservation on site is generally only possible where the material is kept damp until it has been lifted and transported to laboratory. Proper cleaning methods can disclose morphological and cultural features preserved on bones and can minimize damage caused by matrix dirt left in bones. Structural consolidation was best carried out with a polymer in an organic solvent solution. The polymer often used for consolidation was Paraloid B72. New bones in this study were prepared from sheep bones. The bone samples buried in four different types of soil such as salty soil, clay soil, sandy soil and ferruginous soil in different conditions. Fourier transform infrared spectroscopy gives information on the composition and crstallinity of the bone mineral; and at the same time gives an indication on the behavior of the protein material in bone. X-ray powder diffraction analysis was used to determine the crystallinity of modern and archaeological samples. Color changes were measured using CIE L* a* b* system. The total color difference (ΔE^*) was calculated according to the equation: $\Delta E = (\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2$. Polarized light microscopy involves examining thin transparent materials using polarized light. A scanning electron microscope was used to observe the surface morphology. The bones used in experimental works are discovered from Tell Tebilla. It locates in the East Delta, south of Dikrinis, 12 km. North of Mendes. The bones were in bad preservation state because it found in clay soil. Cleaning process, removing salts, completion missing parts and consolidation were applied in this bones preserve this bones from deterioration.

Key words

- Archaeological bones.
- Burial environments.
- pH.
- Deterioration.
- Conservation.
- FTIR.
- XRD.
- Polarized microscope.
- Color changes.
- Soil.

DEDICATION

I dedicate this thesis to my parents

ACKNOWLEDGEMENTS

I would like to express my greatest gratitude and appreciation to my supervisor, Dr. Gomaa Mohamed Mahmoud Abdel-Maksoud, for his valuable guidance, support, and assistance during the course of my present research work. Without his encouragement and guidance throughout the length of this research, its completion would not have been possible. I am also thankful to my second supervisor, Dr. Ali Abdel-Motelib for his help and guidance.

I would like to thank Dr Zeniab Hashesh for his assistance on applied study and in all most of works related to this applied study.

I would also like to show appreciation to my family that helped me a lot during my work in thesis. I give special thanks to my mother. Without her calling, I couldn't achieve my aims. I owe a lot of love to my father who supported me in all difficult times.

List of contents

Contents	6
List of tables	13
List of figures	14
Abstract	21
Aim of study	28
Previous studies	29
Introduction	37
Chapter 1: Burial environments of bones and its impact on bone	
properties.	
1.1. Definition of soils	39
1.2. Soil structure	40
1.3. The chemical composition of soil	40
1.3.1. The organic fractions of soil	41
1.3.2. The inorganic fractions	42
1.3.2.1. Sand fraction	42
1.3.2.2. Silt fraction	42
1.3.2.3. Clay fraction	42
1.4. Formation of soil	43
1.4.1. Physical process	44
1.4.2. Chemical process	44
1.4.3. Biological process	45
1.4.4. The factors that affect the formation of soil	45

1.4.4.1. Parent material	45
1.4.4.1.1. Classification of parent materials	46
1.4.4.1.2. Chemical mineralogical composition of parent materials in the soil	47
1.4.4.2. Climate	47
1.4.4.3. Temperature	47
1.4.4.4. Time	48
1.4.4.5. Relief (land forms and topography)	49
1.4.4.6. Organisms: vegetation, fauna and soil biota	49
1.5. The layer of soil	50
1.6. Particle size distribution and soil texture	51
1.7. Types of soil	51
1.7.1. Sandy soil	52
1.7.1.1. Water content in sandy soil	53
1.7.2. Clay soil	54
1.7.2.1. The water content in clay soil	54
1.7.3. Gravel soils	54
1.7.4. Chalk soil	55
1.7.5. Salty soil	55
1.7.5.1. Soluble Salts and Insoluble Salts	56
1.7.5.1.1. Soluble salts	56
1.7.5.1.2. In soluble salts	57
1.8. The factors that led to the deterioration of archeological bones in differe	nt
hurial environment	58

1.8.1. The intrinsic factors	58
1.8.1.1. Age	58
1.8.1.2. Bone type and size	59
1.8.1.3. Porosity and bone density	60
1.8.2. The extrinsic factors	61
1.8.2.1. Water	61
1.8.2.2. Soil pH	63
1.8.2.2.1. Determination of soil pH	65
Chapter 2: Conservation and restoration of archaeological bones	
from different types of burial environment.	
2.1. Recovery of bones	67
2.2. Handling human remains	67
2.3. First aid of bones in the field	68
2.4. Cleaning of bones	69
2.5. Removal of salts	71
2.5.1 Traditional Treatment for Soluble Salts	71
2.6. Consolidation	72
2.6.1. Resin used in consolidation of bones	73
2.6.1.1. Poly vinyl acetate resin	73
2.6.1.2. Polyvinyl acetate emulsions	73
2.6.2. Methods for deep consolidation	73
2.6.2.1. Immersion under vacuum	74
2.6.2.2. Immersion in solution without vacuum	74

2.6.2.3. Application by pipette	74
2.7. Preservation	74
2.8. Storage	75
Chapter 3: Material and methods.	
3.1. New bones sample	77
3.2. Salty soil	77
3.2.1. Wet acid condition	77
3.2.2. Wet neutral condition	77
3.2.3. Dry condition	78
3.2.4. Dry acidic condition	78
3.3. Ferruginous soil	78
3.3.1. Wet acidic condition	78
3.3.2. Wet neutral condition	78
3.3.3. Dry condition	78
3.3.4. Dry acidic condition	78
3.4. Sandy soil	78
3.4.1. Wet neutral condition	79
3.4.2. Wet acidic condition	79
3.4.3. Dry condition	79
3.4.4. Dry acidic condition	79
3.5. Clay soil	79
3.5.1. Wet normal condition	79

3.5.2. Wet acidic condition	79
3.5.3. Dry condition	79
3.5.4. Dry acidic condition	80
3.6. Archaeological samples	84
3.7. Investigation Methods	84
3.7.1. Fourier Transform Infrared spectroscopy	84
3.7.2. X-ray diffraction (XRD)	85
3.7.3. UV- Spectrophotometer	85
3.7.4. Polarizing light microscope	85
3.7.5 Scanning electron microscope (SEM)	86
3.7.6. Measurement of pH	86
Chapter 4: Results and discussion.	
4.1. Fourier Transform Infrared spectroscopy (FTIR)	88
4.1.1. Organic compounds phase	88
4.1.1.1. OH groups	88
4.1.1.2. C-H group	93
4.1.1.3. Protein	94
4.1.1.4. Amide I	94
4.1.1.5. Amide II	94
4.1.1.6. Amide III	95
4.1.2. Inorganic phase	95
4.2. Polarizing light microscope	96

4.3. Scanning electron microscope	108
4.3.1 Bones in salty soil	108
4.3.2. Bones in Sandy soil	109
4.3.3 Bones in ferruginous soil	110
4.3.4 Bones in clay soil	111
4.4 Color change	112
4.5 X-Ray Diffraction	117
4.6 pH measurement	127
Chapter 5: Experimental works.	
5.1. Historical background	133
5.2. Documentation	136
5.3. Deterioration of Tell Tebilla bones	142
5.3.1. Proximal	142
5.3.2. Phalange	145
5.3.3. Radius	146
5.3.4. Femur	147
5.4. Polarizing microscope	148
5.5. Scanning electron microscope	153
5.6. Fourier Transform Infrared spectroscopy (FTIR)	154
5.6.1. Organic compound phase (collagen)	154
5.6.2. Inorganic phase	155
5.7. Conservation Works	156
5.7.1. Cleaning	156

5.7.1.1. Mechanical cleaning	156
5.7.1.2. Chemical cleaning	157
5.8. Completion process	159
5.9. Consolidation	162
Conclusion	164
References	179
Arabic summary	

List of Tables

No .of tables	Content of Tables	Page
1	Symbols of bone samples in sandy soil	78
2	Symbols of bone samples in salty soil	79
3	Symbols of bone samples in ferruginous soil.	80
4	Symbols of bone samples in clay soil.	81

5	pH measurements in sandy soil.	126
6	pH measurements in salty soil.	127
7	pH measurements in ferruginous soil.	129
8	pH measurements in clay soil.	130

List of figures

No. of		
figures	Contents of figures	Page
Fig 1	Soil forming factors.	41
Fig 2	Different between recent and buried soil.	47
Fig 3	Layers of soil.	48
Fig 4	Horizons of soil.	49
Fig 5	Effects of salts on surface of porous substance.	54
Fig 6	FTIR spectra of the modern and archaeological bones samples.	87
	(A) Modern sample, (B) Archaeological bones sample from Qena.	
Fig 7	FTIR spectra of archaeological bones samples From New Damietta.	87
Fig 8	FTIR spectra of archaeological samples from Ain Shams.	88
Fig 9	FTIR spectra of the archaeological samples from New Damietta.	88
Fig 10	FTIR spectra of the modern bones from clay soil in different condition.	89
Fig 11	FTIR spectra of the modern bone sample in ferruginous soil in	90
	different condition.	
Fig 12	FTIR spectra of the modern bone sample in sandy soil.	90
Fig 13	FTIR spectra of modern bones in salty soil.	91

Fig 14	Photomicrographs of deteriorated bones from salty soil. A, B: modern sample (control), A: Photomicrograph of cross Nichols light microscopy, B: Photomicrograph of polarizing microscope show the Haversian system is very clear. C, D: bone Sample from acidic salty soil, wet condition for 90 days. C: Photomicrograph of cross Nichols light microscopy. D: Photomicrograph of polarizing microscope show Haversian system full with gypsum material and salts.	97
Fig 15	Photomicrographs of deteriorated bones from salty soil. A: photomicrograph of cross Nichols light microscopy for bone sample from acidic salty soil, wet condition buried for 120 days, B: photomicrograph of polarizing microscope for bone sample from wet salty soil buried for 180 days, C, D: bone sample from dry salty soil buried for 150 days. Fig. C: photomicrograph of cross Nichols light microscopy. D: photomicrograph of polarizing microscope.	98
Fig 16	Photomicrographs of deteriorated bones from ferruginous soil. A: photomicrograph of cross Nichols light microscopy for bone sample from acidic ferrginous soil buried for 90 days, B: photomicrograph of polarizing microscope for bone sample from acidic ferriginous soil buried for 90 days, C: photomicrograph of cross Nichols light microscopy for bone sample from acidic ferrginous soil buried for 180 days, D: photomicrograph of polarizing microscope for bone sample from acidic ferriginous soil buried for 180 days.	99
Fig 17	Photomicrographs of deteriorated bones in ferruginous soil. A: Photomicrograph of cross Nichols light microscopy for bone sample buried in acidic ferruginous soil, buried for 150, B: photomicrograph of polarizing microscope for bone sample buried in acidic ferruginous soil, buried for 150 days,	100