

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Effect of Alloying Elements and Processing Techniques on the Properties of Some Magnesium Alloys

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

By

Alia Ahmed Diaa Eldeen

Bachelor of Science in Mechanical Engineering (Manufacturing Engineering and Production Technology) Modern Academy or Engineering and Technology in Maadi, 2012

Supervised By

Prof. Dr. Nahed El-Mahallawy Assoc. Prof. Rawia Hammouda

Cairo - (2017)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Effect of Alloying Elements and Processing Techniques on the Properties of Some Magnesium Alloys

By

Alia Ahmed Diaa Eldeen

Bachelor of Science in Mechanical Engineering (Manufacturing Engineering and Production Technology) Modern Academy or Engineering and Technology in Maadi, 2012

Supervising' Committee

Signature
Date:

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Effect of Alloying Elements and Processing Techniques on the Properties of Some Mg-alloys

By

Alia Ahmed Diaa Eldeen

Bachelor of Science in Mechanical Engineering (Manufacturing Engineering and Production Technology) Modern Academy or Engineering and Technology in Maadi, 2012

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Madiha Shoeib Professor at Central Metallurgical Research and Development Institute.	
Prof. Dr. Ahmed Moneeb ElSabbagh Professor of Materials and Metallurgical Engineering, Faculty of Engineering, Ain Shams University.	
Prof. Dr. Nahed El-Mahallawy Professor of Materials and Metallurgical Engineering, Faculty of Engineering, Ain Shams University.	

Date:

Statement

This thesis is submitted in partial fulfillment of Master of Science degree in mechanical engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of this thesis has been submitted for a degree or qualification at any other scientific entity.

Signature

Alia Ahmed Diaa Eldeen

Researcher Data

Name: Alia Ahmed Diaa Eldeen

Date of birth: 24/5/1989

Place of birth: Cairo, Egypt.

Academic Degree: Bachelor of Science in Mechanical Engineering

Field of specialization: Manufacturing Engineering and Production

Technology

University issued the degree: Modern Academy or Engineering and

Technology in Maadi.

Date of issued degree: July, 2012.

Current job: Research Assistant, Ain Shams University.

Thesis Summary

The former two decades have witnessed an obvious rise in the usage of magnesium and its alloys in the fields of automobiles, aerospace, electronics, structural applications, and biomedical implants, (cardiovascular or orthopedic). However, poor mechanical properties, low formability, and severe corrosion susceptibility are the most challenges that claim more research in the field of magnesium development.

Previous studies have worked on new systems of magnesium alloys comprising relatively inexpensive alloying elements (ex: tin, zinc, and manganese). The present study is investigating the mechanical properties and corrosion behavior of Mg-5Sn-xZn alloy prepared by different processing techniques, where x takes the values of 2 and 4 wt.%. These alloys were studied in the as cast, as solution treated, and hot formed (rolled, and extruded) in relation to the commercially pure magnesium. As an intention to enrich the resistance of corrosion, the minor addition of Mn (~0.1%) is included.

A series of advanced techniques were involved in the present study so as to examine the alloy content [inductively coupled plasma spectrometry (ICP)], microstructure [optical microscopy (OM) and scanning electronic microscopy (SEM)], the morphology and dispersal of the precipitates [energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD)], mechanical properties and corrosion tendency [electrochemical polarization and electrochemical impedance spectroscopy (EIS)].

It could be generally deducted that solution treatment has enhanced the strength of all alloys at the as-cast state without a sensitive influence on the elongation, while the hardness and the corrosion resistance have also increased. Although the rolling at 320 °C has a prime influence on the strength and hardness of the majority of the alloys, but this was at the expense of ductility, and based on that, a subsequent annealing after the last stage of rolling is required to recover the deteriorated elongation. Zn addition is worked as a grain refiner which improved the mechanical properties of the alloys at any production state, while Mn positive effect was obvious only in the alloy Mg-5Sn-2Zn. improving the The maximum tensile properties were obtained by extrusion of alloys Mg-5Sn-2Zn-0.1Mn and Mg-5Sn-4Zn-0.1Mn at 320 °C; these alloys provide both high strength and ductility with an ultimate tensile strength of 223.44±5.44 and 289.44±1.02 MPa and elongation of 22.35±2.4 and 22.02±4.31%, respectively. The Mg-5Sn-2Zn alloy in its rolled state showed the least corrosion rate of about 0.118 mm/year.

Keyword: Magnesium, Tin, Zin Manganese, Casting, Rolling, Extrusion, Heat Treatment, Microstructure, Mechanical properties, Corrosion.

Acknowledgement

This thesis would not have been remotely possible without the guidance and support of my supervisor, Professor Nahed el. Magallay, mentorship allowed me to grow as a researcher and made my masters studies a fully enjoyable experience.

Assoc. Prof. Rawia Mostafa Hammouda for her kind support, encouragement and valuable guidance, throughout the research.

My Mother who spent effort while I am making my experiment, I remember that she was carrying the large cylinder of SF6+ Argon we are in the bus, from the factory to university.

I would like to thank my sister and brother, and to thank my fiancée.

Finally, thanks to my father, may allah bless him. He drew the route which we are following.

Table of Contents

ACKNOWI	LEDGEMENT	I
TABLE OF	CONTENTS	I
NOMENCL	ATURE	IV
LIST OF TA	ABLES	VII
LIST OF FI	IGURES	IX
CHAPTER	1	1
INTRODUC	CTION	1
1.1	Motivation Behind This Thesis	1
1.1.1	Industrial development of magnesium	1
1.1.2	Bio-medical development of magnesium	2
1.2	Development of new Mg alloys	2
1.3	Thesis aim and objectives	3
CHAPTER	2	
REVIEW O	OF LITERATURE	5
2.1	Pure magnesium	5
2.1.1	Microstructure and mechanical properties of C.P magnesium	6
2.1.2	Corrosion of pure magnesium	9
2.2	Strengthening mechanisms	10
2.2.1	Solid solution strengthening	10
2.2.2	Grain boundary strengthening	10
2.2.3	Particle strengthening	11
2.2.4	Texture strengthening	11
2.3	Restoration Mechanisms after deformation	12
2.3.1	Recrystallization	12
2.3.2	Grain growth	13
2.4	Wrought magnesium alloys	13
2.7.1	Rolling	14
2.7.2	Extrusion	15
2.5	Corrosion of magnesium and its alloys	17
2.8.1	Corrosion mechanism	17
2.8.2	Forms of corrosion	18
2.8.3	Factors affecting corrosion	21
2.8.4	Corrosion tests and measurement	23

6	. 2	Previous work	. 27
	2.9.1	Mg-Sn binary system	.27
	2.9.2	Mg-Zn binary system	.29
	2.9.3	Mg-Sn-Zn system	.31
	2.9.4	Current Research	.32
СНАР	TER 3	3	. 41
		AND METHODS	
3.1	PI	AN OF WORK	. 41
3.2	M	ATERIALS SELECTION AND PREPARATION	. 42
3.3	\mathbf{C}	ASTING	. 43
3.4	PF	ROCESSING	. 44
	2.4.1	Solution Treatment	.44
	2.4.2	Rolling	.45
	2.4.3	Extrusion	.45
3.5	M	ICROSTRUCTURE CHARACTERIZATION	. 46
	3.5.1	Sample preparation	.46
	3.5.2	Optimal microscopy (OM)	.47
	3.5.3	Scanning electron microscopy (SEM)	
	3.5.4	X-ray diffraction (XRD)	.48
3.6	M	ECHANICAL PROPERTIES TESTING	. 48
	3.6.1	Tensile testing	.48
	3.6.2	Hardness testing	.49
3.7	Co	ORROSION	. 50
	3.7.1	Linear polarization measurement	.50
	3.7.2	Electrochemical impedance spectroscopy (EIS) measurements	51
CHAP	TER 4	1	. 52
DECL	TTC A	ND DISCUSSION	52
KESU.	LISA	ND DISCUSSION	. 54
4	.1.	Evolution of the microstructure of C.P. magnesium and alloyed magnesium processed by	
d		nt techniques.	.52
		Microstructure of commercially C.P. magnesium at different processing techniques.	
4		volution of the microstructure of magnesium alloys processed by different techniques	
		Mechanical properties of commercially pure and alloyed magnesium processed by differen	
		ues	
u	4.2.1	Mechanical properties of C.P. magnesium with different processing techniques.	
	4.2.1	Effect of alloying elements on the mechanical properties of magnesium alloys processed by different	. / 1
		iques	76
		anical properties of as cast alloys	
		anical properties of as Solution treated alloys	
		1 1	

Mecl	nanical properties of as Rolled alloys	80
Mecl	nanical properties of as extruded alloys	82
4.2.3	Effect of alloying elements on the mechanical properties	84
4.2.4	Effect of processing techniques on the mechanical properties	87
Quar	ntitative calculations of the effect of processing on the strengthening mechanisms	91
4.3.	Corrosion of pure and alloyed magnesium processed by different techniques	98
CHAPTER	5	118
CONCLUS	ION	118
CHAPTER	6	122
FUTURE W	ORK	122
REFERENC	~FS	123

Nomenclature

Acronyms

<u>ASTM</u> American Society for Testing of Materials

<u>EBSD</u> Electron backscatter diffraction

<u>EDX/EDS</u> Energy dispersive x-ray spectroscopy

EIS Electrochemical impedance spectroscopy

FCC Face centered cubic

<u>HCP</u> Hexagonal close-packed

<u>HV</u> Hardness Vickers

<u>ICP</u> Inductively coupled plasma

OCP Open circle potential

<u>OM</u> Optical microscope

<u>RE</u> Rare Earths

<u>SEM</u> Scanning electron microscopy

<u>UTS</u> Ultimate tensile strength

XRD X-ray diffraction analysis

YS 0.2% Yield strength

SBF Simulated Body Fluid

Elements and compounds

<u>Ar</u> Argon

Mg Magnesium

Zn Zinc

<u>Sn</u> tin

Mn manganese

<u>SF</u>₆ Sulfur hexafluoride

Symbol

<u>a</u> Unit cell dimension of an HCP lattice cell

 $\underline{\alpha}$ Pro-eutectic and primary eutectic phase of HCP magnesium matrix

 $\underline{\beta}$ Secondary eutectic phase

 β_A Anodic Tafel slope

 $\underline{\beta_C}$ Cathodic Tafel slope

<u>c</u> Unit height of an HCP lattice cell

<u>C</u> Double layer Capacitance

<u>c/a</u> Characteristic ratio of the HCP lattice

<u>d</u> Average grain diameter

<u>e</u> Electron

<u>E</u> Electrochemical potential

 \underline{E}_f Elongation

EC Equivalent circuit

 \underline{E}_{corr} Open circuit corrosion potential

 $\underline{\varepsilon}$ Stress

 $\dot{\varepsilon}$ Strain rate

<u>i</u> Current density, number of weeks submerged

<u>icorr</u> Open circuit corrosion current density

<u>l</u> Specimen length after fracture

<u>l</u>o Gauge Length

<u>mm</u> Millimeter

MPa Mega pascal

<u>μm</u> Micrometer

 $\underline{P_i}$ Corrosion rate measured electrochemically by tafel extrapolation

 $\underline{P}_{i,EIS}$ Corrosion rate measured by electrochemical impedance spectroscopy

 $\underline{P_w}$ Corrosion rate measured by weight loss

 \underline{P}_H Corrosion rate measured by hydrogen evolution

 $\underline{R_{ct}}$ Charge transfer resistance

 \underline{R}_p Polarization resistance

<u>R</u>_s Solution resistance

 $\underline{\rho}$ Density

V Applied potential

 \underline{V}_f Volume fraction of precipitates

wt.% weight percent

<u>Z</u> Impedance

<u>Z'</u> Real impedance

Z" Imaginary impedance

List of tables

Table 1. Comparing some of magnesium properties with aluminum, titanium, and iron [8]6
Table 2. Mechanical process of pure magnesium at different processing techniques8
Table 3. Literature data of the magnesium alloys where Sn, Zn and Mn are the major alloying
elements
Table 4. Chemical composition (wt. %) of the experimented alloys43
Table 5. Solution treatment applied to the alloys of study
Table 6. Parameters used to evaluate precipitation strengthening of the Mg-5Sn-4Zn-0.1Mn
alloy92
Table 7. Effect of rolling and extrusion on the strengthening of C.P. magnesium94
Table 8. Results of the SEM showing elements' content in the α-Mg solid solution of as cast
and as solution treated Mg-5Sn-4Zn-0.1Mn alloy95
Table 9. Effect of solution treatment on the strengthening of as cast Mg-5Sn-4Zn-0.1Mn
alloy95
Table 10. Results of the SEM showing elements' content in the α-Mg solid solution of as the
as rolled Mg-5Sn-4Zn-0.1Mn alloy96
Table 11. Results of the SEM showing elements' content in the α -Mg solid solution of the as
extruded Mg-5Sn-4Zn-0.1Mn alloy97
Table 12. Effect of rolling and extrusion on the strengthening of as solution treated Mg-5Sn-
4Zn-0.1Mn alloy97
Table 13. Results of the of polarization curves and electrochemical impedance of the
commercially pure magnesium processed by different techniques in 3.5wt.% NaCl
solution
Table 14. Results of the of polarization curves and electrochemical impedance of the Mg-
alloys at their as cast state in 3.5wt.% NaCl solution
Table 15. Results of the of polarization curves and electrochemical impedance of the Mg-
alloys at their as solution-treated state in 3.5wt.% NaCl solution105
Table 16. Results of the of polarization curves and electrochemical impedance of the Mg-
alloys at their as rolled state in 3.5wt.% NaCl solution
Table 17. Results of the of polarization curves and electrochemical impedance of the Mg-
alloys at their as extruded state in 3.5wt.% NaCl solution