

## AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

**Engineering Physics and Mathmatics** 

# New Algorithmic Algebraic Techniques for Cryptanalysis of Cryptographic Ciphers

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Physics, Engineering

Mathematics and Engineering Mechanics

(Engineering Physics and Mathmatics)

by

#### Wageda Ibrahim Shabaan Ahmed Elsobky

Master of Science in Physics, Engineering Mathematics and Engineering Mechanics (Engineering Physics and Mathmatics) Faculty of Engineering Shobra, 2013

Supervised By
Prof. Dr. Reda-Elbarkouky
Dr. Ahmed Abdel Hafez
Cairo - (2017)



## AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

**Engineering Physics and Mathmatics** 

# New Algorithmic Algebraic Techniques for Cryptanalysis of Cryptographic Ciphers

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Physics, Engineering

Mathematics and Engineering Mechanics

(Engineering Physics and Mathmatics)

by

#### Wageda Ibrahim Shabaan Ahmed Elsobky

Master of Science in Physics, Engineering Mathematics and Engineering Mechanics (Engineering Physics and Mathmatics) Faculty of Engineering Shobra, 2013

Supervised By
Prof. Dr. Reda-Elbarkouky
Dr. Ahmed Abdel Hafez



## AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

**Physics and Mathematics** 

# New Algorithmic Algebraic Techniques for Cryptanalysis of Cryptographic Ciphers

by

## Wageda Ibrahim Shabaan Ahmed Elsobky

Master of Science in Physics, Engineering Mathematics and Engineering Mechanics (Engineering Physics and Mathmatics) Faculty of Engineering Shobra, 2013

#### **Examiners' Committee**

| Name and Affiliation        | Signature |  |
|-----------------------------|-----------|--|
| Prof.                       |           |  |
| Choose an item., University |           |  |
| Prof.                       |           |  |
| Choose an item., University |           |  |
| Dr.                         |           |  |
| Choose an item., University |           |  |

### **Statement**

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Physics, Engineering Mathematics and Engineering Mechanics Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Date:

| Wageda Ibrahim Shabaan Ahr | med Elsobky |
|----------------------------|-------------|
|                            | Signature   |
|                            |             |

## **Researcher Data**

| Name: | Wageda Ibrahim Shabaan Ahmed Elsobky |
|-------|--------------------------------------|
|-------|--------------------------------------|

| Date of birth:        | 29/01/1982                                  |
|-----------------------|---------------------------------------------|
| Place of birth:       | Benha                                       |
| Last academic         | Master of Science in Physics, Engineering   |
| degree:               | Mathematics and Engineering Mechanics       |
| Field of              | Mathemat[pics                               |
| specialization:       |                                             |
| University issued the | Faculty of Engineering Shobra               |
| degree:               |                                             |
| Date of issued        | 2013                                        |
| degree:               |                                             |
| Current job:          | Assistant lecture in Faculty of Engineering |
|                       | Benha                                       |

#### Thesis Summary

In our thesis we focus in Algebraic Cryptanalysis of AES "Advanced Encryption Standard" hence Algebraic cryptanalysis is a relatively new field of cryptology. Algebraic cryptanalysis on Rijndael AES, is based on its rich algebraic structure. The basic idea is to model a cipher using a system of polynomial equations over a finite field. This approach has gained attention since Nicolas Courtois claimed that it could be used to attack AES, which has a simple algebraic structure [1]. This attack has also been attempted on other ciphers such as DES [2]. Algebraic cryptanalysis has been shown very effective for families of stream ciphers. Gröbner bases algorithms a well-known method to solve this problem. This thesis has described a description of cryptanalysis types, including Algebraic cryptanalysis type. We also describe the mathematical models of AES. There are three types of models to penetrate the AES cipher . Through this thesis we concentrate in the one which study the nonlinear part of the AES model .In general the equations of AES are divided into two groups, one linear which represents shift row, mix colum and add round key. The second group is the S-Box which is nonlinear.

S-box is the unique nonlinear operation in Rijndael cipher, and it determines the performance of AES cipher. So much work has concentrated on Rijndael S-box. Many researchers devote time to design and improve the algebraic cryptanalysis scheme

[3, 4,]. Algebraic cryptanalysis consists of two steps. First step converts the cipher into a system of polynomial equations, usually over GF(2), or over other rings. Second step, solves the system of equations and obtain from the solution the secret key of the cipher. Many researchers focus on these two steps. Courtois and Pieprzyk [7] analyzed the over defined system . Our focus on solving nonlinear system of equations  $GF(2^8)$  applying a powerful algebraic tool; Gröbner basis; to overcome the nonlinearity features of S-Box. Finally, the analysis shows that how applying Gröbner basis of AES constructs a spare matrix which makes the system easy to be solved. Moreover, we have proved the "Resistance of Algebraic Attack" RAA value  $(\Gamma)$  has been reduced. We apply Gröbner basis on two models of nonlinear S-Box [7,8].

**Key words**: Algebraic cryptanalysis, multivariate quadratic polynomial equation system, S-box, Gröbner bases, Rijndael AES, RAA.

#### Acknowledgment

First of all thanks to ALLAH Who helps me to accomplish this work. There are always some inuential people in anyone's academic life. Since this dissertation is the last written document in my student life, I would like to thank all those who changed my life and attitude during these exciting and challenging years: I can not imagine how I can thank the best teachers of my life, my two angels of God, my parents, for all their support, help, and love during my entire life; the only ones who were always there for me in both my happiness and hard time; the ones I love the most for ever and can not reciprocate even a small part of what they did for me. At any period in my academic life, it was my dream to have someone beside me who has the answer to all my questions. I never had such an opportunity before I met Prof. Reda. I have never met anyone brighter and smarter in my life. I would like to warmly thank Dr. Ahmed Abdel Hafez for his extreme kindness, help and support during the last 3 years. More importantly, he changed my attitude towards several points in life. I learned from him to follow my passion and to do research in areas which I find interesting, though other people believe what I am doing is of no interest. He was always motivating me to set ambitious goals in my research and not to give up until I achieve them all.

#### Thank you

#### List of Figures

## Chapter 2: Cryptanalysis types

| Fig 2. 1 Egyptians Cryptography I             | Error! Bookmark not defined. |
|-----------------------------------------------|------------------------------|
| Fig 2. 2 Cryptographic Model I                |                              |
| Fig 2. 3 Transposition column I               |                              |
| Fig 2. 4 Example of transposition <b>I</b>    |                              |
| Fig 2. 5 Caesar Substitution I                |                              |
| Fig 2. 6 Monoalphabetic substitution I        |                              |
| Fig 2. 7 Hash Functions I                     |                              |
| Fig 2. 8 Asymmetric Key Cryptography I        |                              |
| Fig 2. 9 Symmetric Key Cryptography I         | Error! Bookmark not defined. |
| Chapter 3: Gröbner bases                      |                              |
| Fig 3. 1 The original System                  |                              |
| Fig 3. 2 Three Polynomial of the Ideal I      |                              |
| Fig 3. 3 The original system $107xy+y^2+29$ , |                              |
| Fig 3. 4 The ideal obtained by F4 <b>F</b>    | Error! Bookmark not defined. |
| Chapter 4: Description of The AES             | S                            |
| Fig 4. 1 AES 128 Schematic I                  | Error! Bookmark not defined. |
| Fig 4. 2 Encryption and Decryption of AES I   |                              |
| Fig 4. 3 AESwith different Keys I             | Error! Bookmark not defined. |
| Fig 4. 4 The internal structure of AES I      |                              |
| Fig 4. 5 The AES array of bytes I             |                              |
| Fig 4. 6 The famous AES S-box                 |                              |
| Fig 4. 7 How S-Box operate                    |                              |
| Fig 4. 8 Shift row matrix I                   |                              |
| Fig 4.9 Internal shift row operation I        |                              |
| Fig 4. 10 Mix column                          |                              |
| Fig 4. 11 Internal operation of mix column    |                              |
| Fig 4. 12 Add Round Key                       |                              |
| CHAPTER 6: Algebraic cryptanaly               | ysis of AES using            |
| Gröbner Basis                                 |                              |
| Fig 6. 1 Gröbner result as a matrix I         | Error! Bookmark not defined. |
| Fig 6. 2 Matrix with zero white colour I      |                              |
| Fig 6. 3 model 4with coloured result I        |                              |
| Fig 6. 4 Model 4 with zero white colour I     |                              |

### List of Abbreviations

#### **AES** Advanced Encryption Standard

|                    | , , , , , , , , , , , , , , , , , , ,              |
|--------------------|----------------------------------------------------|
| $x_1,\ldots,x_{n}$ | variables                                          |
| AA                 | Algebraic Attack                                   |
| BES                | Big Encryption System                              |
| BFA                | Brute Force Attack                                 |
| COA                | Cipher text Only Attacks                           |
| CPA                | Chosen Plaintext Attack                            |
| DES                | Data Encryption Standard                           |
| GB                 | Gröbner basis                                      |
| GF                 | Galois field                                       |
| G-J                | Gauss-Jordan (elimination)                         |
| grevlex            | graded reverse lexicographic ordering of monomials |
| HT                 | Heading term of a polynomial                       |
| KPA                | Known Plaintext Attack                             |
| LC                 | leading coefficient of a polynomial                |
| lex                | lexicographic ordering of monomials                |
| LM                 | leading monomial of a polynomial                   |
| LT                 | leading term of a polynomial                       |
| MIM                | Man in Middle Attack                               |
| MQ                 | Multivariate Quadratic Equations                   |
| RAA                | Resistance against Algebraic Attack                |

| $S\left(g_{p},g_{q}\right)$ | The S-Polynomial of f         |
|-----------------------------|-------------------------------|
| XSL                         | Extended Sparse Linearization |
| I                           | ideal                         |
| $f1,\ldots,fm$              | polynomials                   |

## Glossary of Terms and Acronyms

| Affine         | A transformation consisting of multiplication by                |
|----------------|-----------------------------------------------------------------|
| transformation | matrix followed by the addition of a vector                     |
| Bit            | A binary digit having a value of 0or 1                          |
| Cryptology     | is the study of two branches cryptography and                   |
|                | cryptanalysis                                                   |
| Cryptanalysis  | is the study of mathematical tools trying to break the          |
|                | cipher                                                          |
| Plaintext      | It is the original data to be encrypted.                        |
| Cipher text    | It is the output text after the encryption of the original      |
|                | data.                                                           |
| Key            | It is a word or value used in the cryptographic model to        |
|                | cipher the message / decipher the encrypted data.               |
| Encryption     | A process of manipulating a message in such a way that it       |
|                | hides its content with the help of key.                         |
| Decryption     | The operation of turning the encrypted data into its            |
|                | original form.                                                  |
| Crypto Analyst | It is a specialist person in analyzing and breaking codes.      |
| Array          | An enumerated collection of identical entities (e.g., an        |
|                | array of bytes).                                                |
| Block          | Sequence of binary bits that comprise the input, output,        |
|                | State, and Round Key. The length of a sequence is the           |
|                | number of bits it contains. Blocks are also interpreted as      |
|                | arrays of bytes.                                                |
| Byte           | A group of eight bits that is treated either as a single entity |
|                | or as an array of 8 individual bits.                            |
| Round Key      | Round keys are values derived from the Cipher Key using         |
|                | the Key Expansion routine; they are applied to the State in     |
|                |                                                                 |

|                    | the Cipher and Inverse Cipher.                                  |
|--------------------|-----------------------------------------------------------------|
| S-box              | Non-linear substitution table used in several byte              |
|                    | substitution transformations and in the Key Expansion           |
|                    | routine to perform a one-for-one substitution of a byte         |
|                    | value.                                                          |
| Word               | A group of 32 bits that is treated either as a single entity or |
|                    | as an array of 4 bytes                                          |
| IDEA               | The International Data Encryption Algorithm                     |
| Add Round          | Transformation in the Cipher and Inverse Cipher in which        |
| Key                | a Round Key is added to the State using an XOR                  |
|                    | operation. The length of a Round Key equals the size of         |
|                    | the State (i.e., for Nb = 4, the Round Key length equals        |
|                    | 128 bits/16 bytes).                                             |
| SubBytes           | Transformation in the Cipher that processes the State           |
|                    | using a non¬ linear byte substitution table (S-box) that        |
|                    | operates on each of the State bytes independently               |
| XOR                | Exclusive-OR operation.                                         |
| Nk                 | Number of 32-bit words comprising the Cipher Key. For           |
|                    | this standard, $Nk = 4$ , 6, or 8.                              |
| Nr                 | Number of rounds, which is a function of Nk and Nb              |
|                    | (which is fixed). For this standard, $Nr = 10$ , 12, or 14.     |
| Nb                 | Number of columns (32-bit words) comprising the State.          |
|                    | For this standard, $Nb = 4$ .                                   |
| <b>Mix Columns</b> | Transformation in the Cipher that takes all of the columns      |
|                    | of the State and mixes their data (independently of one         |
|                    | another) to produce new columns.                                |
|                    |                                                                 |

### شكر

فى البداية أود أن أحمد الله عز وجل على إعانتى لإتمام هذا العمل.

وأتقدم بخالص الشكر والإمتنان للسادة المشرفين على الرسالة أ.د. رضا امين البرقوقي وأ.م.د. أحمد عبد الحافظ للدعم المستمر طوال فترة البحث والدراسة والتوجيه أثناء كتابة هذا العمل.

ومما لاشك فيه أن الدعم المعنوى المستمر من والدى والدتى وزوجى وأو لادى واخواتى خلال فترة الدراسة له أكبر مردود على إنجاح وإنجاز هذا العمل.

وفى النهاية لايسعنى إلا أن أتقدم بخالص الشكر والعرفان فى كل من ساهم بعلمه أو جهده أو دعمه بطريقة مباشرة أو غير مباشرة فى إنجاز هذا العمل.