"Design, Synthesis, and Biological Evaluation of Some **New Heterocyclic Compounds**"

Thesis presented by

Raghad Mohamed Nowar

B.Sc.

Faculty of Pharmacy, Cairo University 2008

Submitted in Partial Fulfillment of Masters Degree in Pharmaceutical Sciences (Pharmaceutical Chemistry)

Supervised by

Prof. Dr. Dalal Abdelrahman Abou El Ella

Faculty of Pharmacy Ain Shams University

Prof. Dr. Samir Mohamed **El-Moghazy**

Professor of Pharmaceutical Chemistry Professor of Pharmaceutical Chemistry Faculty of Pharmacy Cairo University

Dr. Sahar Mahmoud Abou-Seri

Associate Professor of Pharmaceutical Chemistry Faculty of Pharmacy Cairo University

> Faculty of Pharmacy Ain Shams University 2016

Approval Sheet

This thesis has been approved on	by the examination committee
Prof. Dr. Samir Mohamed El-Moghazy	
Professor of Pharmaceutical Chemistry	
Faculty of Pharmacy, Cairo University	
Prof. Dr. Safinaz El Sayed Abbas	
Professor of Pharmaceutical Chemistry	
Faculty of Pharmacy, Cairo University	
Prof. Dr. Dalal Abdelrahman Abou El Ella	
Professor of Pharmaceutical Chemistry	
Faculty of Pharmacy, Ain Shams University	
Dr. Nasser Saad Mohamed Ismail	
Associate Professor of Pharmaceutical Chem	nistry
Faculty of Pharmacy, Ain shams University	
Dr. Sahar Mahmoud Abou-Seri	
Associate Professor of Pharmaceutical Chem	nistry
Faculty of Pharmacy, Cairo University	

Acknowledgement

The present work was carried out in the labs of the Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Cairo and the Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ain shams.

First and above all, I praise God, the almighty, merciful and compassionate, for providing me this opportunity and granting me the capability to proceed successfully.

I'm grateful to my principal supervisor **Dr. Dalal A. Abou El Ella**, *Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University*, who had suggested this point and has patiently guided me, answered my endless questions, and encouraged me throughout the thesis work providing me with an excellent atmosphere for doing research.

My sincere gratitude belongs to my supervisor and role model **Dr. Samir M. El Moghazy**, *Professor of Pharmaceutical Chemistry*, *Faculty of Pharmacy*, *Cairo University* who has been a tremendous mentor for me on professional and personal aspects. I would like to thank you for your supportive, inspiring and productive attitude that helped me during my first steps in the research field.

I would like to thank my supervisor **Dr. Sahar M. Abu-Seri**, Associate *Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University*, who impressed me with unconditional help. I think you really inspired me with your attitude and manners.

I want to express my deepest gratitude to my mentor **Dr. Essam Eldin A. Osman**, Assistant Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, for performing the molecular modeling study and for many days of unselfish work and deep knowledge and for his support during these years. It was a great honor working and learning under his guidance, for his patience, valuable suggestions, reviews and comments trying to reach perfectionism .

My thanks go to the teaching assistants at the Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University for their priceless and unselfish help during laboratory work specially **Ahmed Khaled** who offered great support. I would like to thank my colleagues at the Department of Pharmaceutical Chemistry, Heliopolis University for Sustainable Development where it has been a privilege to work in such a good atmosphere. The entire staff of our department and the Faculty of Pharmacy is also gratefully acknowledged.

Contents

Contents	Page
List of Abbreviations	I
List of Tables	Ш
List of Figures	IV
Abstract	VI
1. Introduction	1
1.1 Biological activity of quinazolines and quinazolinone derivatives	1
1.2. Apoptosis and different apoptotic pathways	2
1.2.1. The extrinsic pathway: Fas	3
1.2.2. The intrinsic pathway	4
1.2.3. The final way: Caspases	5
1.3. Regulation of proteins involved in apoptosis	6
1.3.1. P53	6
1.3.2. NFKB (Nuclear Factor Kappa-light-chain-enhancer of activated B	7
cells)	7
1.3.3. The Ubiquitin/Proteosome system	7
1.3.4. PI3K (phosphoinositide-3-phosphate)	7
1.4. Therapeutic agents	8
1.4.1. Agents that target the extrinsic pathway	8
1.4.2. Agents that target the intrinsic pathway	8
1.4.3. Caspases activators	10
1.4.4. Quinazolines as activators of caspases	10
2. Aim and Rationale	16
2.1. lead compound	16
2.2. Design of target compounds	17
2.2.1. Identification of the potential binding features in the lead	17
compound	17
2.2.2. Modification of the lead compound through the known techniques	40
of lead optimization	18
2.2.2.1. Compounds IV, Va,b and Vla-e	18
2.2.2.2.Compounds Xa,b, XIIa-g and XIII	19
2.3. Field alignment study using FieldAlign module	19

2.3.2. Methodology	23
2.3.3. Results and discussion	
3. Discussion of the Synthetic Part	
3.1. Synthetic schemes adopted to prepare the target compounds	
3.1.1. Scheme 1	
3.1.2. Scheme 2	29
3.2. Synthesis of III, IV, V, and VI derivatives	30
3.2.1. Synthesis of ethyl 4-oxo-4 <i>H</i> -benzo[d][1,3]oxazine-2-carboxylate (III)	30
3.2.2. Synthesis 4-(2-(ethoxycarbonyl)-4-oxoquinazolin-3(4 <i>H</i>)-	20
yl)benzoic acid (IV)	30
3.2.3. Synthesis of ethyl 4-oxo-3-(4-sulfamoylbenzyl)-3,4-	
dihydroquinazoline-2-carboxylate (Va), and ethyl 4-oxo-3-((4-	31
sulfamoylphenyl)amino)-3,4-dihydroquinazoline-2-carboxylate (Vb)	
3.2.4. Synthesis of ethyl 4-oxo-3-(4-(N-substitutedsulfamoyl)phenyl)-3,4-	32
dihydroquinazoline-2-carboxylate (VIa-e)	32
3.2.5. Synthesis of ethyl 3-amino-4-oxo-3,4-dihydroquinazoline-2-	33
carboxylate (IX)	
3.2.6. Synthesis of 3-phenyl-1 <i>H</i> -[1,2,4]triazino[6,1-b]quinazoline-	22
2,4,10(3 <i>H</i>)-trione (Xa) and 3-(4-chlorophenyl)-1 <i>H</i> -[1,2,4]triazino[6,1-	33
b]quinazoline-2,4,10(3 <i>H</i>)-trione (Xb)	
3.2.7. Ethyl (E)-3-((ethoxymethylene)amino)-4-oxo-3,4-	34
dihydroquinazoline-2-carboxylate (XI)	
3.2.9. Synthesis of 4-((4,10-dioxo-4,10-dihydro-3 <i>H</i> -[1,2,4]triazino[6,1-	34
b]quinazolin-3-yl)amino)benzenesulfonamide (XIII)	20
4. Biological Evaluation	36
4.1. Antiproliferative activity against MCF-7 human breast cancer cell	36
line and HCT-116 human colon cell line	20
4.1.1. Principle	36
4.1.2. Measurement of cytotoxicity using MTT assay	37
4.1.3. Results	39
4.1.4. Discussion of the cytotoxic activity	41 41
4.1.4.1 MCF-7 IC ₅₀ Results discussion	
4.1.4.2.HCT-116 IC ₅₀ Results discussion	41

4.2. Apoptotic evaluation of the synthesized compounds	42
4.2.1. Caspases enzyme assay	42
4.2.2. Effects of compounds Va, Vla, Vld, Xa, Xlla and Xlld on	43
caspases 3, 8 and 9	43
4.3. Cell cycle flow analysis	43
4.3.1. Principle	43
4.3.2. Cell staining procedures with PI	44
4.3.3. Cellular DNA content and expression of proliferation associated	44
proteins	44
4.3.4. Results of cell cycle analysis	45
4.4.1. Assay protocol	48
4.4.2. Results	49
Experimental of the Synthetic Part	54
References	78
Arabic summary	82

List of Abbreviations

ACCs: atom centered charges

AKT: protein kinase B

APAF-1: apoptotic protease activating factor

Apo-1: apoptosis antigen 1

ATRA: all trans retinoic acid

BAD: Bcl-2-associated death promotor

BAK: Bcl-2 homologous antagonist killer

Bax: Bcl-2-associated X protein

BBB: blood brain barrier

Bcl-2: B-cell lymphoma 2

Bid: BH3 interacting domain

BIK: Bcl-2 interacting killer

CACO cells: Caucasian colon adenocarcinoma

• **CD-95**: cluster of differentiation 95

DMF: dimethyl formamide

DMSO: dimethyl sulfoxide

DRs: death receptors

• **EI:** electron impact

• FAP-1: fibroblast activation protein 1

FasL: fas ligand

HBA: hydrogen bond acceptor

HBD: hydrogen bond donor

HeLa: cervical carcinoma cell line

HT29: human colon adenocarcinoma

IAP: inhibitors of apoptotic proteins

L1210: mouse lymphocytic leukemia

MM: molecular mechanics

NADH: nicotinamide adenine dinucleotide

NFKB: nuclear factor kappa-light-chain-enhancer of activated B cells)

PABA: para amino benzoic acid

PBS: phosphate buffered saline

PI3K: phosphoinositide-3-kinase

QM: quantum mechanics

I

List of Abbreviations

• **RPMI:** Roswell park memorial institute medium

• TLC: thin layer chromatography

■ TMS: Tetramethylsilane

■ TNF: tumor necrosis factor

• TRAIL: TNF-related apoptosis inducing ligand

• XED: extended electron distribution

List of Tables

List of Tables

		Page
Table 1	Results of Field Align study for the designed compounds	24
Table 2	Cytotoxic activity of the synthesized compounds	39
Table 3	Effect of compounds Xa, Vla, Vld, Xlla, Vld, Va on caspase 3, 8, and 9	42
Table 4	Cell cycle flow cytometry results	45
Table 5	Results of P53 enzyme assay	50
Table 6	Results of Bax enzyme assay	51
Table 7	Results of Bcl-2 enzyme assay	52

List of Figures

List of Figures

		Page
Figure 1	The extrinsic & intrinsic pathways of apoptosis	3
Figure 2	Targeting Apoptosis Pathways in Cancer Therapy	6
Figure 3	The potential pharmacophoric features in the lead compound	17
Figure 4	Schematic presentation of the design of compounds IV, Va,b, and VIa-e	18
Figure 5	Schematic presentation of the design of compounds Xa,b , XI , and XIa-g	19
Figure 6:	The process followed for each database molecule in FieldAlign	20
Figure 7:	Steps in the creation of field points	21
Figure 8:	Interpretation o field point pattern	22
Figure 9:	The field points of N-methyl acetamide	22
Figure10:	The best aligned pose of compound IV (grey) overlaid with the reference ligand (12) (light green)	24
Figure 11:	The best aligned pose of compound Va (grey) overlaid with the reference ligand (12) (light green)	25
Figure 12:	The best aligned pose of compound VIa (grey) overlaid with the reference ligand (12) (light green)	25
Figure 13:	The best aligned pose of compound Xb (grey) overlaid with the reference ligand (12) (light green)	26
Figure 14:	The best aligned pose of compound XIIb (grey) overlaid with the reference ligand (12) (light green)	26
Figure 15:	The best aligned pose of compound XIII (grey) overlaid with the reference ligand (12) (light green)	27
Figure 16:	MTT assay	37
Figure 17:	Images of cells before and after treatment	38

List of Figures

Figure 18:	Cell cycle flow cytometry of untreated HCT-116	46
Figure 19:	Cell cycle flow cytometry of HCT-116 after treatment with XIIa	46
Figure 20:	Cell cycle flow cytometry of HCT-116 after treatment with VId	47
Figure 21:	Cell cycle flow cytometry of HCT-116 after treatment with Xa	47
Figure 22:	The increase in P53 concentration in HCT-116 cells upon	50
Figure 23:	treatment with compounds VIb, Xa, and XIIa	
	The increase in Bax concentration in HCT-116 cells upon	51
J	treatment with compounds VIb, Xa, and XIIa	
	The decrease in Bcl-2 concentration in HCT-116 cells upon	
Figure 24:	treatment with compounds VIb, Xa, and XIIa	52
	Illustrative diagram showing the relation between P53, BAX and	
Figure 25:	Bcl-2 in apoptosis.	53

Abstract

In this thesis, eighteen novel quinazolinone and triazinoquinazolinone derivatives were designed and synthesized as antineoplastic agents. Molecular modeling techniques were used to support the design. All the synthesized compounds were biologically evaluated for their cytotoxic activity in MCF-7 and HCT-116 cell lines. Most of the synthesized compounds showed excellent antiproliferative activity ranging from 0.35 µM to 3.8 µM in MCF-7 cell line and from 0.02 µM to 0.84 µM in HCT-116 cell line. Six compounds (Va, Vla, Vld, Xa, Xlla and Xlld) were further evaluated for their apoptotic activity as activators of caspases 3, 8 and 9 in HCT-116 cell line. Finally, compounds Vld, Xa and Xlla showing potent effect on caspase 3,8, and 9 were further analyzed by cell cycle flow analysis where they showed cell cycle arrest mainly in G1/S phase.

The thesis included the following parts:

1. Introduction

This part is a comprehensive review for covering the therapeutic agents that target different pro-apoptotic proteins involved in the apoptotic process either through the extrinsic or intrinsic pathways, some agents interfere with both apoptotic pathways. Novel heterocyclic compounds based on quinazoline scaffold are reported to be promising agents as potent caspases activators and Bcl-2 inhibitors.

2. Aim and Rationale

The objective of this work was to design and synthesize new compounds as anticancer agents bearing quinazoline core with potential pro-apoptotic activity. The design of these compounds was based on structural modification of a selected lead compound and was supported by a molecular modeling study.

3. Discussion of the Synthetic Part

Synthesis of the target compounds was carried out adopting the chemical pathways in schemes (1 and 2). The chemical methods for preparing the starting materials and intermediates were mentioned. Also, this part a summarized data about the spectral methods adopted for verification of the structures of the prepared compounds

Reported synthetic intermediates: (5 compounds)

2-(2-Ethoxy-2-oxoacetamido)benzoic acid (II)

- Ethyl 4-oxo-4H-benzo[d][1,3]oxazine-2-carboxylate (III)
- 2-Aminobenzohydrazide (VIII)
- Ethyl 3-amino-4-oxo-3,4-dihydroquinazoline-2-carboxylate (IX)
- Ethyl(E)-3-((ethoxymethylene)amino)-4-oxo-3,4-dihydroquinazoline-2carboxylate (XI)

New final compounds: (18 compounds)

- 4-(2-(Ethoxycarbonyl)-4-oxoquinazolin-3(4*H*)-yl)benzoic acid (IV)
- Ethyl 4-oxo-3-(4-sulfamoylbenzyl)-3,4-dihydroquinazoline-2-carboxylate (Va)
- Ethyl 4-oxo-3-((4-sulfamoylphenyl)amino)-3,4-dihydroquinazoline-2carboxylate (Vb)
- Ethyl 4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazoline-2-carboxylate (VIa)
- Ethyl3-(4-(*N*-(diaminomethylene)sulfamoyl)phenyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate (VIb)
- 4-(4,10-Dioxo-4,10-dihydro-3*H*-[1,2,4]triazino[6,1-b]quinazolin-3-yl)-*N*-(pyridin-2-yl)benzenesulfonamide (VIc)
- Ethyl 4-oxo-3-(4-(*N*-(pyrimidin-2-yl)sulfamoyl)phenyl)-3,4-dihydroquinazoline-2-carboxylate (**VId**)
- Ethyl-3-(4-(*N*-(5-methylisoxazol-3-yl)sulfamoyl)phenyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate (VIe)
- 3-Phenyl-1*H*-[1,2,4]triazino[6,1-b]quinazoline-2,4,10(3*H*)-trione (Xa)
- 3-(4-Chlorophenyl)-1*H*-[1,2,4]triazino[6,1-b]quinazoline-2,4,10(3H)-trione **(Xb)**
- 4-(4,10-Dioxo-4,10-dihydro-3*H*-[1,2,4]triazino[6,1-b]quinazolin-3-yl)benzenesulfonamide (XIIa)
- N-(diaminomethylene)-4-(4,10-dioxo-4,10-dihydro-3*H*-[1,2,4]triazino[6,1-b]quinazolin-3-yl)benzenesulfonamide (XIIb)
- 4-(4,10-Dioxo-4,10-dihydro-3*H*-[1,2,4]triazino[6,1-b]quinazolin-3-yl)-N-(pyridin-2-yl)benzenesulfonamide (**XIIc**)
- Ethyl 4-oxo-3-(4-(*N*-(pyrimidin-2-yl)sulfamoyl)phenyl)-3,4-dihydroquinazoline-2-carboxylate (XIId)
- 4-(4,10-Dioxo-4,10-dihydro-3*H*-[1,2,4]triazino[6,1-b]quinazolin-3-yl)-*N*-(5-methylisoxazol-3-yl)benzenesulfonamide (XIIe)
- 4-(4,10-Dioxo-4,10-dihydro-3*H*-[1,2,4]triazino[6,1-b]quinazolin-3-yl)-*N*-(thiazol-2(3*H*)-ylidene)benzenesulfonamide (**XIIf**)