

Ain Shams University Faculty of Education Physics Department

Evaluation of heavy metal and radionuclide concentration in different environmental samples from middle delta region in Arab Republic of Egypt.

Thesis Presented by

Reham Abd El-Hameed Shehata Saleh

For the Master Degree of Teacher Preparation in Science

(Nuclear Physics)

Supervised by

Prof.Dr. Samir usha El-Sayed El-Khamisy.

Prof. of nuclear physics

Faculty of science, Ain Shams University.

Dr. Mohamed Ahmed Abou-Leila.

Ass. Prof. of Nuclear physics

Faculty of Education, Ain Shams University.

Dr. Ashraf Hamed Mohamed Gad

Ass. Prof. Atomic Energy Authority

Ain Shams University Faculty of Education Physics Department

Researcher name: Reham Abd El-Hameed Shehata Saleh

Title of the thesis: Evaluation of heavy metal and radionuclide

concentration in different environmental samples from middle delta region in Arab Republic of

Egypt

Submitted to : Physics Department, Faculty of Education, Ain

Shams University.

Supervisors:

1-Prof.Dr. Samir usha El-Sayed El-Khamisy.

2-Dr. Mohamed Ahmed Abou-Leila.

3-Dr. Ashraf Hamed Mohamed Gad

Approval sheet

Title: Evaluation of heavy metal and radionuclide

concentration in different environmental samples from middle delta region in Arab Republic of

Egypt

Candidate: Reham Abd El-Hameed Shehata Saleh

Degree: Master degree of Teacher Preparation in science

(Physics)

Board of Advisors

Approved by:

1- Prof.Dr. Samir usha El-Sayed El-Khamisy.

Prof. of nuclear physics Faculty of science, Ain Shams University.

2- Dr. Mohamed Ahmed Abou-Leila.

Ass. Prof. of Nuclear physics Faculty of Education, Ain Shams University.

3- Dr. Ashraf Hamed Mohamed Gad

Ass. Prof. Atomic Energy Authority

Date of Presentation: / / 2017

Post graduate studies:

Stamp: / / 2017 Date of Approval: / / 2017

Approval of Faculty Council: / / 2017

Approval of University Council: / / 2017

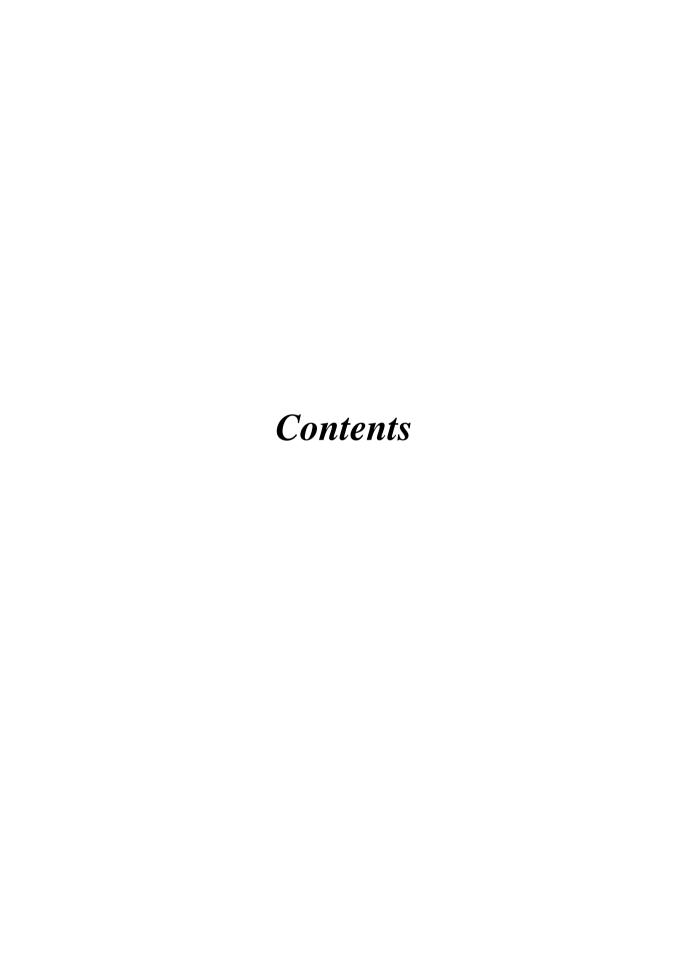
سورة البقرة الآية: ٣٢

Acknowledgement

Always and **first** of all, prayerful thanks to our merciful ALLAH (The Most High) for his indefinite and endless blessings

Secondly, I greatly thank and highly appreciate all people who contributed to fulfilling this research.

My deepest thanks to "*Prof. Dr. Mahmoud Yassin*" the head of physics department, Faculty of Education, Ain Shams University


Words are not enough to express my deep respect, extreme thankfulness and sincere appreciation to my "*Prof. Dr. Samir Usha El-Sayed El-Khamisy* " Prof. of nuclear physics, Faculty of science, Ain Shams University for his sincere supervision. Truly under his guidance I have successfully overcome many difficulties and learned a lot. His understanding, patience, motivation, encouraging and personal guidance have provided a major basis for the present thesis.

I wish to express my deepest thanks and sincere appreciation to "

Dr. Mohamed Ahmed Abou-leila " Ass.prof. of Nuclear physics, Faculty of Education, Ain Shams University for his supervision, assistance in planning this research, valuable unfailing help and constructive criticism through the course of this investigation which have made the completion of this work possible.

I am grateful to my father, my mother, my husband, my brother for their support throughout this study.

Finally, I would like to thank everyone helped me in the nuclear laboratory in faculty of science, Ain Shams university for ideal cooperation.

Contents

Content	Page No.
Abstract.	I
Introduction.	1
Chapter 1 : Radiation Sources :	3
1. Natural Radiation sources.	3
1.1 Terrestrial radiations	3
1.2. The radioactivity in Earth	6
1.3. The radioactivity in water	6
1.4. Air born radioactivity	7
1.5. Cosmic radiations	8
2. Artificial Radionuclides	10
Chapter 2: Theoretical Aspects:	11
2.1. Radiation exposure and doses	11
2.1.1. Exposure	12
2.1.2. Absorbed dose	12
2.1.3. Dose equivalent	13
2.1.4. Effective dose equivalent	15
2.1.5. Dose rate	17
2.2. biological effects of Radiation:	17
2.2.1. Radiation effect on Water	18

Content	Page No.
2.2.2. Establishment of limits of exposure	19
2.3. Protection from Radiation	22
2.3.1 Radiation Protection Principles	23
2.3.2 protection against internal Radiation	24
2.3.3 protection against External Radiation	25
Chapter 3 : Detection techniques	27
3.1. Gamma ray properties and the reaction with the matter	27
3.1.1. Photoelectric effect	28
3.1.2. Compton scattering	29
3.1.3. Pair production	31
3.2. Radiation detector	33
3.3. High voltage power supply	35
3.4. Preamplifier	35
3.5. Amplifier	36
3.6. Multichannel analyzer	36
3.7. Energy calibration	37
3.8. Detection efficiency	38
3.9. Experimental setup	43

Chapter 4: Results and discussion	44
4.1. Radionuclide concentration determination	44
4.1.1. Study area	44
4.1.2. Experimental procedures :	44
A. Soil Samples	45
B. Water Samples	45
4.2.Radioactivity analysis	47
4.3. Evaluation of radiological hazard effects	49
4.3.1. Absorbed dose rate	49
4.3.2. The annual effective dose equivalent	50
4.3.3. Radium equivalent activities	52
4.3.4. Hazard indices	53
4.3.5.Gamma index	55
4.3.6. Annual gonadal dose equivalent	56
4.4.Radioactivity concentration in water	56
4.5 Annual effective dose equivalent	58
Conclusion	60
References	61
Arabic Summary	Í