

Evaluation of Trials of Labour after Previous Caesarean Section in Ain Shams University Maternity Hospital: A Retrospective Study

A Thesis

Submitted for Partial Fulfilment Of

Master of Science Degree in Obstetrics and Gynaecology

Presented By

Hamdy Bakry Mohye El Kinawy

MBBCh (2010)

Teaching Assistant at Obstetrics and Gynaecology Department Faculty of Medicine, Ain Shams University

Under Supervision Of

Prof. Ahmed Ramy Mohammed Ramy

Professor of Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

Dr Rehab Mohammed Abd El Rahman

Lecturer in Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

ACKNOWLEDGEMENTS

First and foremost, thanks to Allah

I'd like to express my gratitude to **Prof. Ahmed Ramy M. Ramy,** *Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University,* for his wise guidance and generous support.

Thanks are due to **Dr Rehab M. Abd El Rahman**,

Lecturer in Obstetrics and Gynaecology, Faculty of

Medicine, Ain Shams University, for her precious advice and
invaluable co-operation.

Thanks to all friends and colleagues who helped and encouraged to get this work come to existence.

I feel deeply thankful to my wonderful family for their support, love and belief.

Hamdy Bakry

TABLE OF CONTENTS

Acknowledgements	i
List of Abbreviations	iii
List of Tables	v
List of Figures	vi
Abstract	ix
Study Protocol	xi
Introduction	1
Aim of the Work	5
Review of Literature	7
History of VBAC: A Century of Controvers	y 7
Assessment of Scar Integrity	17
TOLAC: The Practice and Management	31
Methods	55
Results	61
Discussion	85
Summary and Conclusion	99
Recommendations	101
References	103
Arabic Summary	119

LIST OF ABBREVIATIONS

ACOG	The American College of Obstetricians
	and Gynecologists
aOR	adjusted odds ratio
BMI	body-mass index
CS	caesarean section
CTG	c ardio t oco g raphy
DM	diabetes mellitus
e.g.	exempli gratia, for example
ECV	external cephalic version
et al.	et alii, and other people
FHR	fetal heart rate
g	gram
GA	gestational age
HELLP	haemolysis, elevated liver enzymes, low
	platelet count
HIE	hypoxic-ischaemic encephalopathy
HTN	hypertension
i.e.	<i>id est</i> , in other words
IUFD	intrauterine fetal demise
IUGR	intrauterine growth restriction
kg	k ilo g ram
LBW	low birth weight
LUS	lower uterine segment
mg	m illi g ram
mm	millimetre

NHS	English National Health Service
NICU	neonatal intensive care unit
NIH	US National Institutes of Health
OR	odds ratio
p	p robability value
PGDM	pre-gestational diabetes mellitus
PPH	postpartum haemorrhage
PROM	prelabour rupture of membranes
PT	preterm
RCOG	The Royal College of Obstetricians and
	Gynaecologists
RDS	respiratory distress syndrome
RR	relative risk
SLE	systemic lupus erythematosus
SOGC	The Society of Obstetricians and
	Gynaecologists of Canada
SROM	spontaneous rupture of membranes
TAS	transabdominal scan
TOL	trial of labour
TOLAC	trial of labour after caesarean section
TTN	transient tachypnoea of the newborn
TVS	transvaginal scan
UK	The United Kingdom
US	The United States of America
USS	ultrasound scan
VBAC	vaginal birth after caesarean section
VD	vaginal d elivery
WHO	World Health Organisation
95% CI	95% confidence interval

LIST OF TABLES

Table I.	Summary of benefits and risks of VBAC vs ERCS	32
Table 2.	Types of prior uterine incisions and estimated risks for	
	uterine rupture	34
Table 3.	Statistics of reviewed data for the study period	61
Table 4.	Cases with I prior CS who presented in labour but had	1 a
	repeat CS	62
Table 5.	Characteristics of the study population	63
Table 6.	Associated medical disorders in the study population	65
Table 7.	Registered indications for the previous CS in women	
	undergoing TOLAC after 1 prior CS	67
Table 8.	Comparison of the study population characteristics at	
	time of TOLAC according to outcome	69
Table 9.	Relation of prior vaginal deliveries and prior successful	
	VBAC to outcome of TOLAC	72
Table 10	. Relation of inter-delivery interval and outcome of TOLA	C.
		73
Table 11.	Relation between phase of labour on admission and	
	outcome of TOLAC	74
Table 12	Relation between fetal membrane status on admission	
	and outcome of TOLAC	<i>75</i>
Table 13	. Maternal medical disorders at the time of TOLAC	
	according to outcome	76
Table 14	. Maternal hospital-stay after TOLAC according to	
	outcome	
Table 15	Maternal outcomes after TOLAC	78
	Perinatal outcomes after TOLAC	
	Perinatal outcomes after uterine rupture	

LIST OF FIGURES

Figure 1.	Trends in the US rates of CS and VBAC, 1970 to 1993.
	11
Figure 2.	Trends in the US rates of CS and VBAC, 1989 to 2007.
Figure 3.	LUS thickness measured by TAS and TVS22
Figure 4.	Measurement of the LUS thickness23
Figure 5.	Longitudinal sonogram showing a uterine defect. The
	myometrial layer is seen adjacent to the defect. A
	defect was found in the LUS during CS24
Figure 6.	Longitudinal sonogram showing an area of increased
	echogenicity in the outer layer with myometrial
	thinning measuring 2.3 mm24
Figure 7.	Ultrasound images from the same woman before
	and at SCSH. The arrow points to the scar defect
	whose border was seen more clearly at SCSH than
	without saline enhancement28
Figure 8.	Diagram of a scar defect on TVS. The grey shaded
	triangular area represents the scar defect. The
	dotted (imaginary) line represents the level of the
	internal cervical os. Size is estimated by measuring
	the length (L) and height (h) of the defect, the
	thickness of the remaining myometrium over the
	defect (r) and the thickness of the myometrium close
	to and fundal to the defect (m)28

Figure 9.	Distribution of maternal age in the study population.
Figure 10.	Distribution of maternal BMI at delivery in the study population
Figure 11.	Health status of the study population at time of delivery69
Figure 12.	Distribution of GA at delivery in the study population66
Figure 13.	Distribution of neonatal birth weight in the study population
Figure 14.	Outcome of TOLAC 68
Figure 15.	Relative outcomes of TOLAC in maternal age
	categories 70
Figure 16.	Relative outcomes of TOLAC in BMI categories 70
Figure 17.	Relative outcomes of TOLAC in GA categories 72
Figure 18.	Relative outcomes of TOLAC in birth weight
	categories
Figure 19.	Proportions of women with and without a previous
	VD in cases who achieved a successful VBAC 72
Figure 20.	Relative outcomes of TOLAC in inter-delivery interval categories
Figure 21.	Relative outcomes of TOLAC according to phase of
	labour on admission 74
Figure 22.	Relative outcomes of TOLAC according to fetal membrane status on admission 75
Figure 23.	Hospital-stay after delivery in both outcomes 72
Figure 24.	Approximate frequencies of maternal outcomes 79
Figure 25.	Frequency of maternal complications relative to
	outcomes
Figure 26.	Approximate frequencies of perinatal outcomes after
	TOLAC in the study population

ABSTRACT

Objective

Evaluation of the practice and short term maternal and perinatal outcomes of TOLAC offered to women at ASUMH during the 3-year period from Jan 2013 to Dec 2015.

Study design

Retrospective record-based study.

Results

VBAC rate was 86%. A prior VD, particularly a prior VBAC, and presenting in active labour were significantly associated with a higher rate of success. Lower neonatal birth weight, longer inter-delivery interval and younger maternal age positively influenced the outcome. Hospital-stay was significantly shorter with successful VBAC. Maternal adverse events were more frequent among women who had an unsuccessful TOL, including uterine rupture, blood transfusion and endometritis.

Conclusion

Assessment of individual risks and the likelihood of VBAC is important in determining who are appropriate candidates for TOLAC. If the prerequisites for TOLAC are not available, ERCS is a safer option for delivery.

Keywords: trial of labour, TOLAC, VBAC

STUDY PROTOCOL

Introduction

Since 1985, the international healthcare community has considered the ideal rate for Caesarean Section (CS) to be 10–15%. Since then, CS became increasingly common in both developed and developing countries. When medically justified, a CS can effectively prevent maternal and perinatal mortality and morbidity. However, there is no evidence showing the benefits of CS for women or infants who do not require the procedure (WHO, 2015).

In recent years, there has been widespread public and professional concern about the increasing proportion of CS births and the potential negative consequences for maternal and infant health (RCOG, 2007; WHO, 2015).

Between 1970 and 2007, the CS rate (defined as the number of CS per 100 live births) in the United States increased dramatically from 5% to more than 31%. This increase was a result of several changes in the practice environment, including the introduction of electronic foetal monitoring and the decrease in use of vaginal breech deliveries and forceps deliveries, which influenced the increase in primary CS rate, and the dictum 'once a caesarean, always a caesarean' has largely permeated the obstetric practice (ACOG, 2010).

The rising rate of primary CS have led to an increased proportion of the obstetric population who have a history of prior caesarean delivery (RCOG, 2007). Pregnant women with a CS may be offered either Elective Repeat Caesarean Section (ERCS) or Trial Of Labour After previous Caesarean section (TOLAC), which when successful provides women who desire a vaginal delivery with the possibility of achieving that goal—a Vaginal Birth After Caesarean delivery (VBAC) (ACOG, 2010). The proportion of women who decline VBAC is, in turn, a significant determinant of overall rates of caesarean birth (RCOG, 2007; Guise et al., 2010b).

As the annual incidence of CS in the United States increased from less than 5% during the 1970s to 23.5% in 1988, the National Institutes of Health (NIH) and the World Health Organization (WHO) held consensus conferences in the 1980s and concluded that CS rates were too high and VBAC was an acceptable approach for reducing these rates (Cheng et al., 2011).

This change in approach and recommendations favouring TOLAC was reflected in increased VBAC rates (VBAC per 100 women with a prior CS) from just more than 5% in 1985 to 28.3% by 1996, and the overall CS rate decreased to approximately 20% (ACOG, 2010).

At an individual level, in addition to fulfilling a patient's preference for vaginal delivery, VBAC is associated with decreased maternal morbidity and a decreased risk of complications in future pregnancies. At a population level, VBAC also is associated with a decrease in the overall CS rate (ACOG, 2010).

A woman's perception of self-efficacy and inability to fulfil family obligations have been cited as reasons for women choosing VBAC rather than ERCS. Patient involvement in decision-making as well as VBAC counselling have also been associated with increased choice for VBAC, in addition to increased patient satisfaction. Conversely, lack of education or discussion with the clinician was associated with ERCS. Studies examining external influences on a woman's choice for VBAC have found that women highly value the opinion of their healthcare provider (Guise et al., 2010b).

Yet, neither ERCS nor TOLAC is without risks. As the number of women pursuing TOLAC increased, so did the number of reports of uterine scar dehiscence or rupture and associated maternal and/or neonatal morbidity and mortality. In part, these reports, and the professional liability pressures they engendered, have resulted in a reversal of VBAC and CS trends (ACOG, 2010; Cheng et al., 2011). By 2006, the VBAC rate had decreased to 8.5 % and the total CS rate had increased by more than 50% (from 20.7% in 1996) to 31.1% (ACOG, 2010; Guise et al., 2010b).

The coupling of this trend with a concomitant increase in the primary CS rate portends a continued escalation in the overall CS rate. Both vaginal delivery and CS hold inherent risks. Thus, mothers and clinicians are confronted with complex decisions and must weigh possible risks and benefits associated with VBAC versus ERCS (Guise et al., 2010b).