



# IDENTIFYING WORST-CASE TEST VECTORS FOR LEAKAGE CURRENT AND DELAY FAILURES INDUCED BY TOTAL DOSE IN CMOS ASICS

By

### Mostafa Mahmoud Abd El-Aziz Mohamed

Bachelor of Science in Computer Engineering Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE in
Computer Engineering

## IDENTIFYING WORST-CASE TEST VECTORS FOR LEAKAGE CURRENT AND DELAY FAILURES INDUCED BY TOTAL DOSE IN CMOS ASICS

# By Mostafa Mahmoud Abd El-Aziz Mohamed

Bachelor of Science in Computer Engineering Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE in
Computer Engineering

Under the Supervision of

Assoc. Prof.
Ihab Elsyaed Talkhan
Computer Engineering
Faculty of Engineering
Cairo University

Assoc. Prof.
Amr Galal Eldin Ahmed Wassal
Computer Engineering
Faculty of Engineering
Cairo University

# IDENTIFYING WORST-CASE TEST VECTORS FOR LEAKAGE CURRENT AND DELAY FAILURES INDUCED BY TOTAL DOSE IN CMOS ASICS

# By Mostafa Mahmoud Abd El-Aziz Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE in
Computer Engineering

| Approved by the Examining Committee:                   | <u>Signature</u> |
|--------------------------------------------------------|------------------|
| Assoc. Prof. Ihab Elsyaed Talkhan, Thesis Main Advisor |                  |
| Assoc. Prof. Amr Galal Eldin Ahmed Wassal, Member      |                  |
| Prof. Mahmoud Ali Ashour, External Examiner            |                  |
| Prof. Ahmed Abdel-Rahman Abou-Auf. External Examiner   |                  |

Engineer's Mostafa Mahmoud Abd El Aziz Mohamed

Name:

**Date of** 1/12/1986

Birth:

**Nationality:** Egyptian

**E-mail:** mostafamahmoud86@yahoo.com

**Phone:** 01118762104

**Address:** Abo El Noumrus, Giza

**Registration** 01 / 10 / 2008

Date:

**Awarding** ..../..../......

Date:

**Degree:** Master of Science

**Department:** Computer Engineering Department

**Supervisors:** 

Assoc. Prof. Ihab Elsyaed Talkhan

Assoc. Prof. Amr Galal Eldeen Ahmed Wassal

**Examiners:** 

Prof. Ahmed Abdel-Rahman Abou-Auf (External examiner)
Prof. Mahmoud Ali Ashour (External examiner)
Assoc. Prof. Ihab Elsayed Talkhan (Thesis main dvisor)
Assoc. Prof. Amr Galal Eldeen Ahmed Wassal (Member)

Title of Thesis:

Identifying Worst-Case Test Vectors for Leakage Current and Delay Failures Induced by Total Dose in CMOS ASICs

#### **Key Words:**

Total Dose, ASIC, CMOS, Worst-Case, Test Vectors, Leakage Current, Logic failure, Delay failure.

#### **Summary:**

The test standard MIL-STD-883, method 1019, for testing electronic devices exposed to totalionizing dose (TID) emphasizes the use of worst-case test-vectors (WCTV). However, they are typically not used in the total-dose testing of ASIC devices because they are known to be very difficult to identify. In the TID testing for space application, WCTV can be used to test the hardness assurance of a certain ASIC part before using it in space. This thesis discusses the development of novel methodologies which successfully identify, for the first time, the worst-case test-vectors for CMOS sequential ASIC devices targeting both leakage current failures, logic failures and delay failures induced by total-ionizing dose (TID). Those methodologies follow the typical design flow of ASIC device using standard-cell libraries. To identify the WCTV, we started by developing a cell-level fault model for each type of failure induced by total dose for all cells within a given standard-cell library. The fault models are implemented using a hardware descriptive language (HDL) and validated using SPICE simulations in where we use TID degraded MOS parameters. Next, we developed search algorithms to identify the WCTV of the ASIC devices. Finally, we verified our developed methodologies experimentally using a test chips (13 bit sequential bridge (for leakage and logic failures) and 8\*8 combinational multiplier (for delay failures)) fabricated using ON Semiconductor 0.5 micron technology through MOSIS. The test chip was then exposed to gamma rays from Cobalt 60 (Co60) cell which produce 5K rad/minute. The measured results were consistent with those from our functional simulations of the ASIC devices using the developed fault models. Furthermore, the results show a significant difference between WCTV and other categories of test vectors.

Insert photo here

## Acknowledgments

I would like to express my special appreciation and thanks to my advisor Professor Dr. Ahmed Abou Auf, you have been a tremendous mentor for me. I would like to thank you for encouraging my research and for allowing me to grow as a research scientist. Your advice on both research as well as on my career have been priceless. I would also like to thank my thesis supervisors, Professor Amr Wasal and Professor Ihab Talkhan for helping me in this thesis. I also want to thank them for letting my defense be an enjoyable moment, and for your brilliant comments and suggestions, thanks to you.

I would like to thank Mentor Graphics Company for allowing me to use their tools and helping me in using them. Also I want to thank MOSIS Company for granting me in fabricating two Chips.

I would especially like to thank my best friend Hamzah Ahmed who supporting me a lot in this thesis.

### **Dedication**

This thesis is dedicated to my beloved wife who spent sleepless nights with and was always my support in the moments when there was no one to answer my queries. It is also dedicated to my father, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my mother, who taught me that even the largest task can be accomplished if it is done one step at a time.

# **Table of Contents**

| ACKNO        | WLEDGMENTS                                        | I   |
|--------------|---------------------------------------------------|-----|
| DEDICA       | ATION                                             | II  |
| TABLE        | OF CONTENTS                                       | III |
|              | F TABLES                                          |     |
|              | F FIGURES                                         |     |
|              | ICLATURE                                          |     |
|              | ACT                                               |     |
|              | ER 1 : INTRODUCTION                               |     |
| 1.1.         | Introduction                                      |     |
| 1.1.         | MOTIVATION                                        |     |
| 1.2.         | PROBLEM STATEMENT                                 |     |
| 1.3.<br>1.4. |                                                   |     |
|              | METHODOLOGY                                       |     |
| 1.5.         | THESIS ORGANIZATION                               | 2   |
| CHAPTI       | ER 2 : RADIATION EFFECT ON MOSFET DEVICES         | 3   |
| 2.1.         | ELECTROMAGNETIC SPECTRUM                          | 3   |
| 2.2.         | METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR |     |
| 2.2.1        |                                                   |     |
|              | 2.1.1. Physical Structure                         |     |
| 2.2          | 2.1.2. Circuit Symbol                             |     |
|              | 2.1.3. Physical Operation                         |     |
|              | 2.1.4. Static Characteristics                     |     |
| 2.2.2        |                                                   |     |
|              | 2.2.1. Structure and Physical Operation           |     |
|              | 2.2.3. Circuit Symbol                             |     |
| 2.2.3        | •                                                 |     |
| 2.2.4        | . Complementary-symmetry MOS logic                | 11  |
| 2.3.         | IONIZING RADIATION EFFECT                         | 14  |
| 2.3.1        | . Total Dose Effects                              | 15  |
| 2.3.2        |                                                   |     |
| 2.4.         | MIL-STD_883                                       |     |
| 2.5.         | WORST-CASE TEST VECTOR GENERATION                 |     |
| CHAPTI       | ER 3 : LOGIC AND LEAKAGE CURRENT FAILURE          | 26  |
| 3.1.         | Intoduction                                       | 26  |
| 3.2.         | SEQUENTIAL CIRCUIT                                | 26  |
| 3.2.1        | ~                                                 |     |
| 3.2.2        | • • • • • • • • • • • • • • • • • • • •           |     |
|              | I EARAGE CUDDENT FAIRT MODEL                      | 20  |

| 3.3.1    | . Leakage Current Failure                         | 29 |
|----------|---------------------------------------------------|----|
| 3.3.2    | . Combinational Cells Fault Model                 | 29 |
| 3.3      | .2.1. Fault Model                                 |    |
|          | .2.2. Objective                                   |    |
|          | .2.3. The Model                                   |    |
|          | .2.4. Excitation Function                         |    |
|          | 2.5. Measure for leakage                          |    |
| 3.3.3    | . Sequential Cells Fault Model                    |    |
| 3.4.     | LOGIC FAILURE FAULT MODEL.                        |    |
|          |                                                   |    |
| 3.5.     | WORST-CASE TEST VECTORS FOR CYCLE FREE CIRCUITS   |    |
| 3.5.1    |                                                   |    |
| 3.5.2    |                                                   |    |
|          | .2.1. Genetic Algorithm                           |    |
|          | .2.2. Particle Swarm Optimization                 |    |
| 3.6.     | WORST-CASE TEST VECTORS FOR CYCLIC CIRCUITS       |    |
| 3.6.1    |                                                   |    |
| 3.6.2    | · · · · · · · · · · · · · · · · · · ·             |    |
| 3.7.     | EXPERIMENTAL RESULTS                              | 51 |
| CHAPT    | ER 4 : DELAY FAILURES                             | 56 |
| 4.1.     | Intoduction                                       | 56 |
| 4.2.     | ANALYSIS OF TOTAL DOSE INDUCED DELAY FAILURE      | 57 |
| 4.2.1    | . Operating Frequency in Synchronous Circuits     | 57 |
| 4.2.2    | . Total Dose Induced Delay Failure                | 57 |
| 4.3.     | FAULT MODEL OF TOTAL DOSE INDUCED DELAY FAILURE   | 59 |
| 4.3.1    | . Delay Fault Model of Manufacture Defects        | 59 |
| 4.3.2    |                                                   |    |
| 4.4.     | DELAY FAILURE WORST CASE TEST VECTORS             |    |
| 4.5.     | FAST SEARCH ALGORITHM FOR WORST CASE TEST VECTORS | 64 |
| 4.6.     | EXPERIMENTAL VALIDATION                           | 66 |
| СНАРТ    | ER 5 : CONCLUSION AND FUTURE WORK                 | 68 |
|          | ENCES                                             |    |
| MET TAKE | 11 TUD                                            |    |

# **List of Tables**

| Table 3.1: Evaluation of the excitation condition functions for Enor2 for a differe | ent |
|-------------------------------------------------------------------------------------|-----|
| input combinations.                                                                 | 32  |
| Table 3.2: ADK 3.1 Cell Library                                                     | 33  |
| Table 3.3: ADK 3.1 cells sorted in according to their sensitivities                 | 40  |
| Table 3.4: Synthesis report the 5*5 pipelined multiplier                            | 42  |
| Table 3.5: Synthesis Report the FSM Design Example                                  | 50  |
| Table 3.6: Irradiation and Postirradiation WCTV Sequence for Logic Failure          |     |
| Table 3.7: Irradiation and Postirradiation WCTV Sequence for Leakage Current l      |     |
| 1                                                                                   | 51  |
| Table 3.8: Cells used in the netlist of the test chip corresponding to fault model  |     |
| normalized leakage current (IL)                                                     | 52  |
| Table 3.9: Irradiation and Postirradiation WCTV Sequence for Leakage Current l      |     |
| of the test chip                                                                    |     |
| Table 3.10: The fault model sensitivity of the cells used in the test chip          |     |
| Table 3.11: Irradiation and Postirradiation WCTV Sequence for logic failure of the  |     |
| chip                                                                                |     |
| Table 4.1: Delay fault model for nand2 cell                                         |     |
| Table 4.2: Delay fault model for OAI21 cell                                         |     |
| Table 4.3: test vectors in hexadeciamal for 8*8 multiplier test chip                |     |
|                                                                                     |     |

# **List of Figures**

| E' 0.1 FM                                                                                    |   |
|----------------------------------------------------------------------------------------------|---|
| Figure 2.1: EM waves spectrum                                                                |   |
| Figure 2.2: Physical structure of n-channel MOSFET of the depletion type                     |   |
| Figure 2.3: Circuit symbol for the n-channel depletion-type MOSFET                           |   |
| Figure 2.4: Physical operation of the depletion-type MOSFET for small vDS                    |   |
| Figure 2.5: The iD – vDS characteristics of the depletion-type MOSFET for small vDS          |   |
|                                                                                              | 6 |
| Figure 2.6: The iD – vDS characteristics of the depletion-type MOSFET                        | 7 |
| Figure 2.7: Physical structure of n-channel enhancement-type MOSFET                          | 8 |
| Figure 2.8: Ideal static iD-vDS characteristics for an n-channel enhancement-type            |   |
| MOSFET                                                                                       | 8 |
| Figure 2.9: The iD-vGS characteristics for an n-channel enhancement-type MOSFET in           | n |
| pinsh-off                                                                                    |   |
| Figure 2.10: Circuit symbol for the n-channel enhancement type MOSFET                        |   |
| Figure 2.11: Circuit symbol for the p-channel enhancement type MOSFET                        |   |
| Figure 2.12: The basic CMOS inverter                                                         |   |
| Figure 2.13: Operation of the CMOS inverter when vI is high                                  | 2 |
| Figure 2.14: Operation of the CMOS inverter when vI is low                                   | 3 |
| Figure 2.15: The transfer characteristic of the CMOS inverter                                |   |
| Figure 2.16: two input CMOS Nor gate                                                         |   |
| Figure 2.17: Schematic diagram illustrating the possible processes by which ionizing         | _ |
| radiation in an MOS device leads to the creation of oxide charge, neutral traps, and         |   |
|                                                                                              | 6 |
| interface traps                                                                              |   |
| Figure 2.18:Schematic of basic effects processes in MOS structures with a positive gate bias |   |
|                                                                                              | / |
| Figure 2.19: Representative plot of the logarithm of the drain current of an n-channel       | _ |
| MOS transistor as a function of gate voltage before and after irradiation                    | 8 |
| Figure 2.20: Representative plot of threshold voltages of n- and p-channel MOS               |   |
| transistors as a function of radiation dose, for transistors biased on or off during the     | _ |
| irradiation                                                                                  | 8 |
| Figure 2.21: Representative plot of the maximum functional frequency and standby             |   |
| power supply current for a microprocessor circuit as a functional of radiation dose19        | 9 |
| Figure 2.22: Threshold voltage of an n-channel transistor as a function of irradiation       |   |
| and anneal time after irradiation. The two curves represent transistors that were            |   |
| fabricated with different process sequences                                                  | 0 |
| Figure 2.23: Representative plot of the maximum functional frequency and standby             |   |
| power supply current of a microprocessor circuit as a function of time after irradiation     |   |
|                                                                                              | 0 |
| Figure 2.24: Representative plot of the power supply current of a CMOS circuit as a          |   |
| function of power supply voltage for the cases when a parasitic SCR structure is in its      |   |
| on state or off state                                                                        | 2 |
| Figure 2.25: Flow diagram for ionizing radiation test procedure for MOS24                    |   |
| Figure 3.1: Sequential circuit block diagram                                                 |   |
| Figure 3.2: Synchronous sequential circuits diagram                                          |   |
| Figure 3.3: Asynchronous sequential circuits diagram23                                       |   |
| Figure 3.4: CMOS inverter and leakage current due to gate oxide inversion29                  |   |
| Figure 3.5: Negative shifts in Vth in CMOS Inverter                                          |   |

| Figure 3.6: VHDL function implementation of the fault model for aoi21               | 34 |
|-------------------------------------------------------------------------------------|----|
| Figure 3.7: SPICE netlist for aoi21 cell of ADK 3.1                                 |    |
| Figure 3.8: Clocked CMOS Inverter                                                   |    |
| Figure 3.9: D-latch using clocked inverter                                          | 36 |
| Figure 3.10: Spice netlist of dff cell                                              | 37 |
| Figure 3.11: Gate level schematic of dff cell                                       | 37 |
| Figure 3.12: Transistor level schematic of dff cell                                 | 38 |
| Figure 3.13: Example for a 4-stage 5*5 pipelined multiplier                         |    |
| Figure 3.14: Equivalent combinational circuit of 5*5 pipelined multiplier           | 41 |
| Figure 3.15: Model for FSM                                                          | 48 |
| Figure 3.16: Equivalent combinational circuit for FSM sequential circuit            | 49 |
| Figure 3.17: State diagram of an FSM example                                        | 49 |
| Figure 3.18: The state diagram of an FSM example implemented in the test chip       | 52 |
| Figure 3.19: The overall fault model normalized leakage IL at different test vector |    |
| categories                                                                          | 53 |
| Figure 3.20: The overall fault model normalized leakage IL at different test        | 54 |
| Figure 4.1: Model for synchronous circuit                                           | 57 |
| Figure 4.2: CMOS inverter with an output load capacitance                           | 58 |
| Figure 4.3: Definition of the propagation delay parameters for the inverter         | 58 |
| Figure 4.4: Example for two cascaded inverters                                      | 60 |
| Figure 4.5: Example for an inverter driving N inverters                             |    |
| Figure 4.6: Transistor-level schematic for nand2                                    | 62 |
| Figure 4.7: Transistor-level schematic for oai21                                    | 63 |
| Figure 4.8: Example for WCTV for delay failure in a full adder                      | 64 |
| Figure 4.9: netlist of 8*8 multiplier                                               | 65 |
| Figure 4.10: Normalized delay using three categories of test vectors                | 66 |
| Figure 4.11: Total dose failure levels as a result of delay failure using deferent  |    |
| categories of test vectors                                                          | 67 |

### **Nomenclature**

Worst-Case Test-Vector **WCTV** TID **Total Ionizing Dose** Electromagnetic EM Device under Test DUT

Hardware Description Language HDL

Very High Speed Integrated Circuit (VHSIC) Hardware Description **VHDL** 

Language

Application-Specific Integration Circuits Genetic Algorithms **ASIC** 

GA

**ATPG** Automatic Test Pattern Generation Particle Swarm Optimization **PSO** 

#### **Abstract**

The purpose of this thesis is to investigate the effects of radiation in CMOS ASICs circuits and develop a new methodology to identify worst case test vectors (WCTV) that induced leakage current and delay failures in these circuits.

In the past, the researchers studied the effect of radiation sources like x-ray and space on combinational and sequential circuits. They revealed that total ionizing dose caused the threshold voltage of MOS transistors to change because of trapping charges in the silicon dioxide gate insulator. For sub-micron devices these trapped charges can potentially "escape" by tunneling effects. Leakage currents are also generated at the edge of NMOS transistors and potentially between neighbor N-type diffusions. Commercial digital CMOS processes can normally stand a few radiation doses without a significant increase in power consumption. Modern sub-micron technologies tend to be more resistant to total dose effects than older ones. Furthermore, they identified a methodology to get WCTVs that induced logic failures and leakage current in combinational circuits.

For leakage current, the methodology starts by developing generic fault model which used to calculate leakage current that is induced in different CMOS cells like xor, aoi, or, ...etc. then uses the genetic algorithm to find the WCTVs by generating random input vectors then calculate leakage current that is induced by these vectors using leakage current fault model.

For delay failures, the methodology begins by identifying fault model that calculates delay in different cells. Then the directed graph theory is used to select some critical paths. Finally the genetic algorithm is used to find the WCTVs for delay failures in selected critical paths using delay fault model.

The genetic algorithm is better than exhaustive search this is because exhaustive search examines a huge search space which made simulation time take 3 days to find WCTVs while the genetic algorithm take almost 5 minutes. Furthermore, the WCTVs for leakage current and delay failure which the genetic algorithm found are either optimum or near-optimum solutions.

The new methodologies for finding leakage current and delay failure WCTVs are validated experimentally using 8\*8 multiplier chip and bridge chip respectively which were fabricated at MOSIS company using CMOS AMI 0.5 u technology and Mentor Graphics tools (Leonardo spectrum, fast scan, design architect and IC station). After that the chips were exposed to radiation using cobalt 60 device at the national center for radiation research and technology.

The test vectors which were generated using the genetic algorithm simulation were applied on the chips during radiation, and then leakage current and delay were measured. Nominal vectors which give average measurements for leakage current and delay were selected using exhaustive search to compare it with WCTVs. The comparison proved that there are significant between WCTVs and nominal vectors in measuring leakage current and delay after exposing the chips to radiation.

## **Chapter 1: Introduction**

In this thesis, the worst case test vectors (WCTV) that can be used to induce leakage current and delay failures in sequential circuits that are exposed to radiation are indentified. It's importance lies in keeping the sequential circuits safe and working properly even when they are exposed to source of radiation by other methods instead of shielding circuits by any materials.

#### 1.1. Introduction

When the electronic chips are exposed to source of radiation like space or x-rays, their function may not occur properly. This is due to the leakage current and delay failure that may happen when the chips are exposed to a certain amount of total dose.

There are many papers that discussed the effect of radiation on the combinational and sequential circuits in general and there are those which identified WCTVs that induced leakage current on the combinational circuits without talking about sequential ones. Therefore, in this thesis the effect of radiation on CMOS sequential circuits and identifies WCTVs that induced leakage current and delay failures on these circuits are discussed.

#### 1.2. Motivation

The results of this thesis will be used to protect the sequential circuits from the leakage current and delay failures when exposed to the radiation. There are many ways to protect the electronics chips from radiation, one of them to shield the chip by material like lead with specific thickness but this method is expensive. Instead chips will be redesigned to use less sensitive cells to radiation consequently; they can be protected without using any shielding materials.

#### 1.3. Problem Statement

The old papers focused on discussing the effect of radiation on electronic circuits only, by determining what occur to the chips after they exposed to radiation. This thesis will focus on identifying WCTVs that maximize leakage current and propagation delay on sequential circuits when they will be exposed to radiation.

### 1.4. Methodology

First in this thesis two fault models are developed. One of them calculates leakage current and the other one calculates propagation delay of sequential circuits. After that search for WCTVs that induced leakage current and delay failures is introduced using

genetic algorithm (GA). Finally our simulation results are validated using physical experiment. This physical experiment will used sequential and combinational chips that are designed using AMI 0.5 u CMOS technology by Mentor Graphics tools and fabricated at MOSIS. These chips then will be exposed to radiation rays using cobalt 60 device at national center for radiation research and technology.

### 1.5. Thesis Organization

The remainder of this thesis is organized as following. Chapter 2 will provide a description of electromagnetic spectrum, background on metal oxide semi conductor field effect transistor (MOSFET) and the radiation effect on MOSFET. After that chapter 3 will talk about the logic and leakage current fault model for sequential circuits and how to generate the WCTVs for them. The methodology for finding delay failure worst case test vectors will explain in chapter 4. Finally chapter 5 will conclude the thesis and will talk about our future work.