Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Immune response against vaccines prepared from locally recovered *Listeria monocytogenes*

A Thesis Presented

 $\mathbf{B}\mathbf{y}$

Ahmed Orabi Hassan Mohammed

(MSc, 2013 Cairo University)

For the degree of

PhD in Veterinary Science

(Bacteriology, Immunology and Mycology)

Under The Supervision of

Prof. Dr. Kamelia Mahmoud Osman

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Dr. Ahmed Samir Mohammed

Assistant Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

2017

ABSTRACT

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

Name: Ahmed Orabi Hassan Mohammed

Birth date: 14-3-1988

Nationality: **Egyptian**

For the degree of: **PhD** (Microbiology)

Title of Thesis: "Immune response against vaccines prepared from

locally recovered Listeria monocytogenes"

Supervisors:

Prof. Dr. Kamelia Mahmoud Osman

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Dr. Ahmed Samir Mohammed

Assistant Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

In the present study 7 *L.monocytogenes* local isolates recovered from ruminant raw milk (2 cow milk, 2 goat milk, 1 buffalo milk, 1 ewe milk, 1 she camel milk)were showed positive amplification of the 571 bp fragment of primer specific for prfA gene followed with sequencing, phylogenetic analysis and genbank accession number. The phylogenetic analysis showed that the cow milk L.monocytogenes strain with accession number KP271933 was the ancestor isolate which can use in vaccine preparation. Locally prepared inactivated L. monocytogenes vaccine by using different methods of inactivation (formalization, binary inactivation, thermal inactivation, sonication and irradiation) accompanied with different immunomodulatory agents (palm date extract , peppermint extract , thyme extract , mushroom lectins and pidotimoid) showed that the best humoral immune response which expressed as "Antibody titer ug/ml" at the 3rd week post vaccination and the best cellular immune response which expressed as "IL6 Conc. pg\ml" and "IFN-g conc. pg\ml " at the 1st week post vaccination of mice to locally prepared Listeria monocytogenes vaccines with irradiated and sonicated vaccine adjuvanted with mineral oil pidotimoid, Lectins, and thymol, when compared with those adjuvanted with mineral oil palm date and peppermint extract by using ELISA. Antibody titer of irradiated mineral oil pidotimoid, lectins, thymol, palm date and peppermint adjuvanted vaccine were 1911, 1878, 1678, 1534, and 1453 µg/ml respectively, IL6 Conc. were 31, 19, 18, 16 and 15 pg\ml and the IFN-g conc. were 250, 60, 50, 35, and 37 pg\ml, also antibody titer of sonicated mineral oil pidotimoid, lectins, thymol, palm date and peppermint adjuvanted vaccine were 1810, 1666, 1585, 1432, and 1355 µg/ml respectively, IL6 Conc. were 31, 18, 15, 12 and 12 pg\ml respectively, and the IFN-g conc. were 200, 60, 45, 30 and 30 pg/ml respectively. On the other hand, antibody titer of heated mineral oil pidotimoid, lectins, thymol, palm date and peppermint adjuvanted vaccine 1650, 1520 1502, 1225 and 1119 µg/ml, IL6 Conc. were 15, 12, 10, 9 and 9 pg/ml respectively, and the IFN-g conc. were 150, 50, 35, 25, and 30 pg/ml respectively. However in case of binary mineral oil pidotimoid, lectins, thymol, palm date and peppermint adjuvanted vaccine Antibody titer were 1250, 1230, 1205, 990 and 920 µg/ml respectively, IL6 Conc. were 10, 9, 8, 8 and 8 pg\ml respectively and the IFN-g conc. were 130, 50, 35, 25 and 30 pg\ml respectively. While Antibody titer of formalized mineral oil pidotimoid, lectins, thymol, palm date and peppermint adjuvanted vaccine were 950, 820, 800, 790 and 710 µg/ml respectively, IL6 Conc were 9, 8, 8, and 8 pg\ml respectively, and the IFN-g conc. were 130, 50, 35 , 30 pg\ml respectively. The results of the ELISA were supported by the challenge test results which recorded that, the irradiated and sonicated vaccine adjuvanted with mineral oil pidotimoid, Lectins, and thymol were the best Protective (efficacy 100%)"when compared with those adjuvanted with mineral oil palm date and peppermint extract or compared with other inactivated methods as (formalin, binary and heating).

ACKNOWLEDGEMENT

First, my deepest prayerful thanks to **Allah** for giving me everything J need.

No word can express my deepest appreciation, gratitude and sincere thanks to Prof. Dr. Kamelia Mahmond Osman, Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for her valuable supervision, ideal guidance, constructive criticism and continual encouragement throughout the course of the study without which this thesis would not have been fulfilled in its present form.

J wish to express my thanks to Dr. Ahmed Samir Mohammed Assistant Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for his valuable supervision, guidance, and continual encouragement throughout the course of the study.

J wish to express my thanks to Dr. Mahmond Dardiri Cl-Hariri, Assistant Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for his valuable help, advise and facilities he offered during the practical work.

J am very gratefully indebted to all of the staff members of the Department of Microbiology, Faculty of Veterinary Medicine, Cairo University who were always available when J needed advice.

LIST OF CONTENTS

Title	Page
INTRODUCTION	1
REVIEW OF LITERATURE	13
MATERIALS and METHODS	143
RESULTS	182
DISCUSSION	276
SUMMARY	300
REFERENCES	305
ARABIC SUMMARY	-

LIST OF TABLES

Number	Table	Page
1	Regulation and conservation of virulence genes.	27
2	Phases of immune response	43
3	Main Immunological Definitions	79
4	Effector Mechanisms Triggered by Vaccines	80
5	Recognition of Vaccine Determinants by Pattern Recognition Receptors	82
6	Determinants of Primary Vaccine Antibody Responses in Healthy Individuals	85
7	Determinants of the Duration of Vaccine Antibody Responses in Healthy Individuals	91
8	Hallmarks of Memory B cell Responses	97
9	Determinants of Secondary B cell Responses	100
10	T cell Responses to Vaccines	106
11	Determinants of Memory T cell Responses	106
12	Main compositions of vaccines	129
13	Overview of structural and functional relationships of	139
	subfamilies of C-type lectins involved in pathogens sensing.	
14	Standard bacterial strains	143
15	List of primers used in the PCR-based assay for the	146
	detection of L. monocytogenes major virulence gene prfA	
16	Differential characteristics of L. monocytogenes	157
17	Biochemical reaction for Listeria monocytogenes	185
18	Results of API for examined Listeria monocytogenes	185
19	Results of Listeria MICROBACT 12L for examined Listeria	185
	monocytogenes	
20	Serotyping of L. monocytogenes recovered from examined raw	186
	milk samples	
21	Results of Hemolysis and CAMP TEST	187
22	Accession number of 7 Listeria monocytogenes on gene	189

	bank	
23	Results of Antibody titers in sera of mice vaccinated with	200
	irradiated L.monocytogenes vaccines measured by ELISA.	
24	Antibody titers in sera of mice vaccinated with sonicated	205
	L.monocytogenes vaccines measured by ELISA.	_00
25	Antibody titers in sera of mice vaccinated with Heated L.monocytogenes vaccines measured by ELISA test	210
26	Antibody titers in sera of mice vaccinated with Binary L.monocytogenes vaccines measured by ELISA test	215
27	Antibody titers in sera of mice vaccinated with Formalized L.monocytogenes vaccines measured by ELISA	220
28	Results of IL6 Concentration "pg\ ml" in sera of mice vaccinated with irradiated <i>L.monocytogenes</i> vaccines measured by ELISA	225
29	Results of IL6 Concentration "pg\ ml" in sera of mice vaccinated with sonicated <i>L.monocytogenes</i> vaccines measured by ELISA	230
30	Results of IL6 Concentration "pg\ ml" in sera of mice vaccinated with heated L.monocytogenes vaccines measured by ELISA	234
31	Results of IL6 Concentration "pg\ ml" in sera of mice vaccinated with binary L.monocytogenes vaccines measured by ELISA	239
32	Results of IL6 Concentration "pg\ ml" in sera of mice vaccinated with formalized <i>L.monocytogenes</i> vaccines measured by ELISA	244
33	Results of IFN-gamma titers in sera of mice vaccinated with irradiated <i>L.monocytogenes</i> vaccines measured by ELISA	248
34	Results of IFN-gamma titers in sera of mice vaccinated with sonicated <i>L.monocytogenes</i> vaccines measured by ELISA	253
35	Results of IFN-gamma titers in sera of mice vaccinated with heated <i>L.monocytogenes</i> vaccines measured by ELISA	258
36	Results of IFN-gamma titers in sera of mice vaccinated with binary <i>L.monocytogenes</i> vaccines measured by ELISA	263
37	Results of IFN-gamma titers in sera of mice vaccinated with formalized <i>L.monocytogenes</i> vaccines measured by ELISA	268
38	Protective efficacy of prepared <i>Listeria monocytogenes</i> vaccines after challenge with virulent strains	272- 273

LIST OF FIGURES

Number	Figure	Page
1	Scheme of intracellular life cycle of pathogenic Listeria	2
2	Location of virulence-associated genes in L. monocytogenes	2
3	The <i>Listeria monocytogenes</i> cell infection cycle and the virulence factors involved in the successive steps.	5
4	Different ways for vaccines construction	8
5	Conjugation of polysaccharides to proteins in the vaccines construction	9
6	Zipper" versus "trigger" mechanisms of bacterial entry inside host cells.	16
7	The role of autophagy in control of innate immunity and the survival mechanisms of intracellular bacteria.	30
8	The above graphic illustrates the levels of defense.	31
9	The Immune Response; Specific Defenses Occur Via Cell-Mediated and Antibody-Mediated Immunity.	33
10	Overview of the Integrated Immune Response.	34
11	Adaptive immunity is induced as a response against a specific antigen	35
12	Phases involved in the primary response to an antigen.	43
13	Two distinct modes of IL-6 receptor signaling	48
14	Immediate-early uptake of Lm from the blood Marginal zone phagocytes	59
15	Consequences of <i>L. monocytogenes</i> (Lm) infection in the splenic PALS By 24 h post-infection	60
16	Inflammasome activation by L. monocytogenes	60
17	Live, attenuated vaccines use a weakened version of the microbe	69
18	Inactivated or killed vaccines contain microbes that have been inactivated	70
19	Subunit vaccines contain just the antigens of the microbe that best stimulate the immune system.	70
20	Harmless toxoid molecules	71
21	Conjugate vaccines link antigens or toxoids to the polysaccharide or sugar molecules	72
22	DNA vaccines use a microbe's genetic material	73

23	Recombinant vector vaccines use the harmless shell of one microbe to deliver genetic material of a disease-causing microbe	74
24	Initiation of a vaccine response	80
25	Extra follicular and germinal center responses to protein antigens	82
26	Correlation of antibody titers to the various phases of the vaccine response	87
27	Extra follicular B cell responses to polysaccharide antigens	89
28	Generation of B cell memory responses	96
29	Generation of T cell effector responses.	104
30	Classification of Adjuvants	120
31	Immunomodulatory effects of adjuvants.	121
32	Illustrative procedure for identification of L.monocytogenes	154
33	Short Gram-positive rods of the <i>Listeria</i> monocytogenes isolates	182
34	Change color of Half Fraser and Fraser broth from amber yellow to brown or black	182
35	L.monocytogenes on PALCAM agar	183
36	L.monocytogenes on Oxford agar	183
37	L.monocytogenes on ALOA agar	183
38	L.monocytogenes motility	184
39	L.monocytogenes Hemolysis	186
40	L.monocytogenes CAMP test	186
41	Anton's test	187
42	L.monocytogenes on Congo red agar	187
43	L.monocytogenes on Vero cells	188
44	Agarose gel electrophoresis showing positive amplification of product 571	188
	bp fragment of \underline{prfA} gene of Listeria monocytogenes . performed with	
	specific primer	
45	Alignment report between the sequenced prfA gene of L. monocytogenes	190
	isolated from the milk of cow with 10 of the aligned sequences from Gene bank	
46	Alignment report between the sequenced prfA genes of L. monocytogenes	191
-	isolated from the milk of cow with 10 of the aligned sequences from Gene	

	bank.	
47	Alignment report between the sequenced prfA gene of L. monocytogenes	192
	isolated from the milk of buffalo with 10 of the aligned sequences from	
	Gene bank.	
48	Alignment report between the sequenced prfA gene of L. monocytogenes	193
	isolated from the milk of goat with 10 of the aligned sequences from Gene	
	bank	
49	Alignment report between the sequenced prfA gene of L. monocytogenes	194
	isolated from the milk of goat with 10 of the aligned sequences from Gene	
	bank	
50	Alignment report between the sequenced prfA gene of L. monocytogenes	195
	isolated from the milk of ewe with 10 of the aligned sequences from Gene	
	bank.	
51	Alignment report between the sequenced prfA gene of L. monocytogenes	196
	isolated from the milk of she-camel with 10 of the aligned sequences from	
52	Gene bank Similarity Matrix or Identity Percent Matrix	197
53	Neighbor-joining tree for type strains, including listeria monocytogenes	197
	strains obtained by analysis of 360-bp fragments of the <i>prfA</i> gene. Bootstrap values (500 replicates) are indicated for the main branches.	
	Intron is excluded from the phylogenetic analysis.	
54	Antibody titers in sera of mice vaccinated with irradiated	201
	L.monocytogenes vaccines	
55	Antibody titers in sera of mice vaccinated with irradiated	201
	L.monocytogenes vaccines (3 weeks post vaccination)	
56	Antibody titers in sera of mice vaccinated with irradiated	202
	L.monocytogenes vaccines (1 st week post challenge)	
57	Antibody titers in sera of mice vaccinated with irradiated $L.monocytogenes$ vaccines (2 nd week post challenge)	202
58	Antibody titers in sera of mice vaccinated with irradiated	203
	L.monocytogenes vaccines (3 rd week post challenge)	
59	Autiliary titous in some of mice receivated with somicated	206
39	Antibody titers in sera of mice vaccinated with sonicated L.monocytogenes vaccines.	200
60	Antibody titers in sera of mice vaccinated with sonicated	206
	L.monocytogenes vaccines (3 weeks post vaccination)	
61	Antibody titers in sera of mice vaccinated with sonicated L.monocytogenes vaccines (1 st week post challenge)	207
62	Antibody titers in sera of mice vaccinated with sonicated	207
02	L.monocytogenes vaccines (2 nd week post challenge)	207
63	Antibody titers in sera of mice vaccinated with sonicated	208
	L.monocytogenes vaccines (3 rd week post challenge)	
64	Antibody titers in sera of mice vaccinated with heated <i>L.monocytogenes</i>	211
٠.	vaccines.	

65	Antibody titers in sera of mice vaccinated with heated <i>L.monocytogenes</i> vaccines (3 weeks post vaccination)	211
66	Antibody titers in sera of mice vaccinated with heated $L.monocytogenes$ vaccines (1 st week post challenge)	212
67	Antibody titers in sera of mice vaccinated with heated <i>L.monocytogenes</i> vaccines (2 nd week post challenge)	212
68	Antibody titers in sera of mice vaccinated with heated <i>L.monocytogenes</i> vaccines (3 rd week post challenge)	213
69	Antibody titers in sera of mice vaccinated with binary L.monocytogenes vaccines.	216
70	Antibody titers in sera of mice vaccinated with binary L.monocytogenes vaccines (3 weeks post vaccination)	216
71	Antibody titers in sera of mice vaccinated with binary $L.monocytogenes$ vaccines (1 $^{\rm st}$ week post challenge)	217
72	Antibody titers in sera of mice vaccinated with binary <i>L.monocytogenes</i> vaccines (2 nd week post challenge)	217
73	Antibody titers in sera of mice vaccinated with binary <i>L.monocytogenes</i> vaccines (3 rd week post challenge)	218
74	Antibody titers in sera of mice vaccinated with formalized L.monocytogenes vaccines.	221
75	Antibody titers in sera of mice vaccinated with formalized L.monocytogenes vaccines (3 weeks post vaccination)	221
76	Antibody titers in sera of mice vaccinated with formalized L.monocytogenes vaccines (1 st week post challenge)	222
77	Antibody titers in sera of mice vaccinated with formalized L.monocytogenes vaccines (2 nd week post challenge)	222
78	Antibody titers in sera of mice vaccinated with formalized L.monocytogenes vaccines (3 rd week post challenge)	223
79	IL6 Concentration "pg\ ml" in sera of mice vaccinated with irradiated L.monocytogenes vaccines.	226
80	IL6 Concentration "pg\ ml" in sera of mice vaccinated with irradiated L.monocytogenes vaccines. (3 weeks post vaccination)	226
81	IL6 Concentration "pg\ ml" in sera of mice vaccinated with irradiated L.monocytogenes vaccines. (1 st week post challenge)	227
82	IL6 Concentration "pg\ ml" in sera of mice vaccinated with irradiated L.monocytogenes vaccines . (2 nd week post challenge)	227
83	IL6 Concentration "pg\ ml" in sera of mice vaccinated with irradiated L.monocytogenes vaccines. (3 rd week post challenge)	228
84	IL6 Concentration "pg\ ml" in sera of mice vaccinated with sonicated L.monocytogenes vaccines.	231
85	IL6 Concentration "pg\ ml" in sera of mice vaccinated with sonicated L.monocytogenes vaccines . (3 weeks post vaccination)	231
86	IL6 Concentration "pg\ ml" in sera of mice vaccinated with sonicated L.monocytogenes vaccines . (1 st week post challenge)	232
87	IL6 Concentration "pg\ ml" in sera of mice vaccinated with sonicated L.monocytogenes vaccines . (2 nd week post challenge)	232
88	IL6 Concentration "pg\ ml" in sera of mice vaccinated with sonicated L.monocytogenes vaccines . (3 rd week post challenge)	232
-		

89	IL6 Concentration "pg\ ml" in sera of mice vaccinated with heated L.monocytogenes vaccines.	235
90	IL6 Concentration "pg\ ml" in sera of mice vaccinated with heated L.monocytogenes vaccines. (3 weeks post vaccination)	235
91	IL6 Concentration "pg\ ml" in sera of mice vaccinated with heated L.monocytogenes vaccines. (1 st week post challenge)	236
92	IL6 Concentration "pg\ ml" in sera of mice vaccinated with heated L.monocytogenes vaccines. (2 nd week post challenge)	236
93	IL6 Concentration "pg\ ml" in sera of mice vaccinated with heated L.monocytogenes vaccines . (3 rd week post challenge)	237
94	IL6 Concentration "pg\ ml" in sera of mice vaccinated with binary L.monocytogenes vaccines.	240
95	IL6 Concentration "pg\ ml" in sera of mice vaccinated with binary L.monocytogenes vaccines. (3 weeks post vaccination)	240
96	IL6 Concentration "pg\ ml" in sera of mice vaccinated with binary L.monocytogenes vaccines . (1 st week post challenge)	241
97	IL6 Concentration "pg\ ml" in sera of mice vaccinated with binary L.monocytogenes vaccines . (2 nd week post challenge)	241
98	IL6 Concentration "pg\ ml" in sera of mice vaccinated with binary L.monocytogenes vaccines . (3 rd week post challenge)	242
99	IL6 Concentration "pg\ ml" in sera of mice vaccinated with formalized L.monocytogenes vaccines.	245
100	IL6 Concentration "pg\ ml" in sera of mice vaccinated with formalized L.monocytogenes vaccines . (3 weeks post vaccination)	245
101	IL6 Concentration "pg\ ml" in sera of mice vaccinated with formalized L.monocytogenes vaccines . (1 st week post challenge)	246
102	IL6 Concentration "pg\ ml" in sera of mice vaccinated with formalized L.monocytogenes vaccines . (2 nd week post challenge)	246
103	IL6 Concentration "pg\ ml" in sera of mice vaccinated with formalized L.monocytogenes vaccines . (3 rd week post challenge)	246
104	IFN-gamma Concentration "pg\ ml" in sera of mice vaccinated with irradiated <i>L.monocytogenes</i> vaccines.	249
105	IFN-gamma Concentration "pg\ ml" in sera of mice vaccinated with irradiated <i>L.monocytogenes</i> vaccines . (3 weeks post vaccination)	249
106	IFN-gamma Concentration "pg\ ml" in sera of mice vaccinated with irradiated $L.monocytogenes$ vaccines . (1 st week post challenge)	250
107	IFN-gamma Concentration "pg\ ml" in sera of mice vaccinated with irradiated <i>L.monocytogenes</i> vaccines . (2 nd week post challenge)	250
108	IFN-gamma Concentration "pg\ ml" in sera of mice vaccinated with irradiated $L.monocytogenes$ vaccines . (3 $^{\rm rd}$ week post challenge)	251
109	IFN-gamma Concentration "pg \backslash ml" in sera of mice vaccinated with sonicated $L.monocytogenes$ vaccines .	254
110	IFN-gamma Concentration "pg\ ml" in sera of mice vaccinated with sonicated <i>L.monocytogenes</i> vaccines . (3 weeks post vaccination)	254
111	IFN-gamma Concentration "pg\ ml" in sera of mice vaccinated with sonicated $L.monocytogenes$ vaccines . (1 st week post challenge)	255
112	IFN-gamma Concentration "pg\ ml" in sera of mice vaccinated with sonicated $L.monocytogenes$ vaccines . (2 $^{\rm nd}$ week post challenge)	255
113	IFN-gamma Concentration "pg\ ml" in sera of mice vaccinated with sonicated $L.monocytogenes$ vaccines . (3 $^{\rm rd}$ week post challenge)	256
	<u> </u>	