GENETIC CONSTRUCTION OF NEW STRAINS OF LACTIC ACID BACTERIA

BY

RASHA GOMMA SAID SALIM

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2001 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2009

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Genetics)

Department of Genetics Faculty of Agriculture Cairo University EGYPT

2016

APPROVAL SHEET

GENETIC CONSTRUCTION OF NEW STRAINS OF LACTIC ACID BACTERIA

Ph. D. Thesis In Agric. Sci. (Genetics)

By

RASHA GOMMA SAID SALIM

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2001 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2009

APPROVAL COMMITTEE

Dr. SAMIR ABDEL AZIZ IBRAHIM Professor of Genetics, Fac. Agric., Ain Shams University
Dr. HAGGAG SALAH ZAIN MOSTAFAAssociate Professor of Genetics, Fac. Agric., Cairo University
Dr. NIVIEN ABDEL RAHMAN ABOSEREH Researcher Professor of Genetics, National Research Center
Dr. ABDELHADI ABDALLAH ABDELHADI

Date: / / 2016

SUPERVISION SHEET

GENETIC CONSTRUCTION OF NEW STRAINS OF LACTIC ACID BACTERIA

Ph. D. Thesis In Agric. Sci. (Genetics)

By

RASHA GOMMA SAID SALIM

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2001 M.Sc. Agric. Sci. (Genetics), Fac. Agri., Cairo Univ., 2009

SUPERVISION COMMITTEE

Dr. AHAMED NAGIB El-Sayed Sharaf (late) Professor of Genetics, Fac. Agric., Cairo University

Dr. ABDELHADI ABDALLAH ABDELHADI Associate Professor of Genetics, Fac. Agric., Cairo University

Dr. NAGWA IBRAHIM ABDELFATTAH ELARABI Associate Professor of Genetics, Fac. Agric., Cairo University

Dr. NIVIEN ABDEL RAHMAN ABOSEREH Researcher Professor of Genetics, National Research Center Name of Candidate Rasha Gomaa Said Salim Degree: Ph.D.

Title of Thesis: Genetic Construction of New Strains of Lactic Acid Bacteria

Supervisors: Late Prof. Dr. Ahmed Nagib El-Sayed Sharaf

Dr. Abdelhadi Abdallah Abdelhadi Dr. Nagwa Ibrahim Abdelfattah Elarabi Prof. Dr. Nivien Abdel Rahman Abosereh

Department: Genetics Approval: / / 2016

ABSTRACT

Ten local isolates of lactic acid bacteria (LAB) able to produce bacteriocin were purified from traditional dairy products and then identified morphologically. These isolates were tested for activity of bacteriocin production against a wide range of food spoilage pathogens and termed as I₁ to I₁₀. Three different isolates I₁, I₂ and I₃ were selected as the best bacterial isolates that gave a high activity of the bacteriocin production. The morphological, biochemical and molecular identifications based on (16s rRNA gene). It characterized I_1 as E. faecium, I_2 as E. faecium and I_3 as Pediococcus pentosaceus. The sequences of these isolates were deposited in GenBank database under accession numbers LC063691, LC063692 and LC063861. The genetic improvement was done via conjugation as one important method to obtain strains have high bacteriocin production and activity compared with parents. Genetic improvement of selected bacterial isolates were carried out using two different techniques of conjugation; filter and broth mating techniques. The transconjugtion frequencies of the filter mating technique (4.6×10⁻⁵) was higher than the broth mating technique (2.4×10⁻⁵). The genetic variability among the transcojugants lines were tested using RAPD analysis and showed polymorphism percentages for 13.76% donor, recipient tranconjugants lines The genes encoding proteins involved in bacteriocin production were isolated and sequenced from E. faecium AH2 (entA, entI, entF, entR, orfA2, orfA3), Pediococcus pentoceseus AH1(PapA, PedB) and nis A from Lactococcus lactis sub lactis. All sequences of genes were deposited in the GenBank database under accession numbers: LC064146, LC064147, LC064148, LC064149, LC064150, LC064151, LC101300, LC101489 and LC101789.

Keywords: Bacteriocin, Lactic acid bacteria, *16S rRNA* gene, RAPD PCR Conjugation, Bacteriocin genes, Cloning.

DEDICATION

I dedicate this work to Prof. Dr. Ahmed Nagib El-Sayed Sharaf, Prof. Dr. Nivien Abdelrahman Abosereh, my mother the most kind person on the earth, my late father for all the support they lovely offered along the period of my post graduation., whom my heart felt thanks; to my brothers and sisters, my husband Mahdy and my sons Mohamed, Mahmoud, mostafa and my daughter Nivien for their patience, my frinds, and to every one want that world to be abetter place to live.

ACKNOWLEDGEMENT

First of all, I do thank "ALLAH" for all gifts he has given me. I would like to express my sincere gratitude and deep appreciation to late Professor Dr. Ahmed N. Sharaf, professor of Genetics, Faculty of Agriculture, Cairo University, for his supervision, keen interest, encouragement, kindness, revising the manuscript and support to pursue this thesis. Also I would like to express my sincere gratitude and deep appreciation to Professor Dr. NivienA. AboSereh, Professor of Microbial Genetic Dept., National Research Center (NRC), for her supervision, excellent support and continuous encouragement. Sincere appreciation is extended to all professors and colleagues in NRC who have given me a hand during this Work. I will always be indebted and expression my profound appreciation to Dr. AbdElhdi A. AbdElhdi, Associate Professor of Genetics, Faculty of Agriculture, Cairo University, for his supervision continuous encouragement and help in writing this thesis.

I would like to express my deepest thanks for **Dr. Haggag** S. Zain Associate Professor of Genetics, Faculty of Agriculture, Cairo University, and **Dr. Nagwa I. Elarabi** Associate Professor of Genetics, Faculty of Agriculture, Cairo University, for their help in practical work of this thesis.

LIST OF ABBREVIATIONS

LAB	Lactic acid bacteria
ddH ₂ O	Double-distilled water
X-Gal	5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
IPTG	isopropyl- β -D-thiogalactopyranoside
No	number
ORF	Open reading frame
rpm	Round per minute
API	Analytical Profile Index
LB	Luria-Beratni
KAA	Kanamycin aesculin azide
MRS	DeMan, Rosa and sharpa
MDR	Multi drug resistance
GRAS	Generally recognized as safe

	CONTENTS	page
INTF	RODUCTION	1
REV	IEW OF LITERATURE	4
1.	Lactic acid bacteria	4
2.	Probiotics LAB	5
3.	Bacteriocin and food spoilage pathogens	7
4.	Classification of bacteriocins	12
5.	Enterococcus faecium bacteriocins	14
6.	Application of LAB bacteriocin	15
	a. Food biopreservation	15
	b. Bacteriocins and human health applications	17
7.	Identification and characterization of LAB	18
	a. Morphological and physiological identification	18
	b. Molecular identification	19
8.	LAB bacteriocins genes localization	22
9.	Genetic improvement of bacteriocin production	26
MAT	ERIALS AND METHODS	30
RESU	ULTS AND DISCUSSION	60
1.	Isolation and characterization of LAB	61
2.	Antimicrobial spectrum of crude bacteriocin from	63
	LAB isolates	
3.	Morphological and physiological characterization	66
4.	Molecular Characterization	72
5.	Identification and characterization of bacteriocin	
	genes from different bacterial isolates	80
	a. Isolation of <i>Nisin A</i> gene from <i>Lactococcus lactis</i> sub	82
	lactis and pedocin A genes and Pediococcus	
	pentosaceus AH1	
	b. Sequence analysis using bioinformatics tools	86
	c. Isolation of Enterocin A from <i>Enterococcus faecium</i>	91
	d. Sequence analysis using bioinformatics tools	96
6.	Cloning of the PCR products of some bacteriocin genes	106

CON	TENTS (continued)	page
	Antibiotic resistance patterns of <i>Lactococcus lactis sub lactis</i> (donor) <i>and E. faecium</i> AH2 (recipient)	111
0.	conjugation	115
	a. Evolution of transconjugants	117
	a. RAPD PCR analysis	119
SUM	MARY	124
REF	ERENCES	129
	BIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	The LAB isolates	30
2.	Indicator bacterial strains and it's growth conditions	31
3.	List of antibiotics and concentration	35
4.	RAPD primers name and sequence	37
5.	Primers used in isolation of some genes responsible for bacteriocin production from selected bacterial isolates	38
6.	Morphological characterization of the ten bacterial isolates	62
7.	Antimicrobial spectrum of bacteriocin from LAB isolates against Gram positive and Gram negative bacteria (disc diffusion assay)	64
8.	The bacteriocin activity of LAB isolates and average inhibition zone	65
9.	The morphological and physiological characterization of three isolates that highly bacteriocin activity	67
10.	Carbohydrate fermentation profiles of LAB isolated based on API 20 test kit	69
11.	Carbohydrate fermentation profiles of LAB isolated from based on API 50CHL test kit	70
12.	Accession number of baceriocin genes	106
13.	Antibiotic resistance patterns of <i>Lactococcus lactis sub lactis</i> and <i>E</i> . <i>faecium</i> AH2 strains	112
14.	The conjugation between <i>Lactococcus lactis sup lactis</i> and <i>Enterococcus faecium</i> AH2	116

No.	Title	Page
15.	The activity of bacteriocin (AU/ml ⁻¹) produced by donor, recipient strains and transconjugants lines.	117
16.	The growth rate of donor, recipient and transconjugants lines OD at 600 nm at 45°C	118
17.	Total number of scorable bands and the polymorphic among strains	122
18.	Similarity matrix	122

LIST OF FIGURES

No.	Title	Page
1.	DNA markers	35
2.	Restriction map of pTZ57R/T vector	36
3.	The growth of different isolates at different specific media	61
4.	The morphology of different bacterial isolates $(I_1 \text{ to } I_{10})$ under light microscope	63
5.	The $Staph$ ATCC 25923 clear zone for different bacterial isolates (I_1 , I_2 , I_3 and I_4) on agar plate	64
6.	The PCR-amplification of 16s rRNA gene using 8F and 1492 R primers; Lane M: GeneRuler DNA Ladder 1kb Lane 1: 16s rRNA gene fragment of isolate 1; Lane 2: 16s rRNA gene fragment of isolate2; Lane 3: 16s rRNA gene fragment of isolate3	73
7.	The nucleotide sequence of 16s rRNA gene for Enterococcus faecium AH2	74
8.	The nucleotide sequence of 16s rRNA gene for Enterococcus faecium AH3	75
9.	The nucleotide sequence of 16s rRNA gene of Pediococcus pentosaceus AH1	76
10.	The phylogenetic tree based on partial 16s $rRNA$ sequences, showing the relationship between isolate (I ₁) and other species. The tree was constructed using the neighbor-joining method) <i>Enterococcus faecium</i> strain: AH2 (LC063692.1)	77
11.	The phylogenetic tree based on partial 16s <i>rRNA</i> sequences, showing the relationship between isolate 1and other species. The tree was constructed using neighborjoining method. <i>Enterococcus faecium:</i> AH3 (LC063861.1)	77

No.	Title	Page
12.	The phylogenetic tree based on partial 16s rRNA sequences, showing the relationship between isolate (I ₃) and other species. The tree was constructed using neighborjoining method. <i>Pediococcus pentosaceus</i> (LC063691.1)	78
13.	Plasmid profiles for three bacterial strains lane1 and 2; <i>Enterococcus</i> AH2, lane 3 and 4 <i>Enterococcus</i> AH3, lane 5 and 6 <i>pediococcus</i> AH1 and lane 7 and 8; positive control) extracted by Qiagen mimiprep kit and manual preparation	81
14.	The PCR amplification of <i>Pap A</i> gene (lane1). <i>pedB</i> gene (lane 2) and <i>NisA</i> gene (lane 4); M DNA marker	83
15.	The nucleotide and protein sequences of the <i>Pap A</i> gene	86
16.	The nucleotide and protein sequences of the <i>Ped B</i> gene	87
17.	The nucleotide and protein sequences of the <i>nisA</i> gene partial cds	87
18.	The phylogenetic tree for the <i>PapA</i> gene using the BLAST program	88
19.	The phylogenetic tree for the <i>Ped B</i> gene using the BLAST program.	89
20.	The phylogenetic tree for the <i>nisA</i> gene using the BLAST program	90
21.	The PCR amplification of the entA gene	91
22.	The PCR amplification of the entI gene	92
23.	The PCR amplification of the <i>ent F</i> gene	92
24.	The PCR amplification of orfA3 and orf A2 genes	93
25.	The PCR amplification of the <i>entR</i> gene	93
26.	The nucleotide and protein sequences of the ent A gene	97
27.	The nucleotide and protein sequences of the <i>ent I</i> gene	97
28.	The nucleotide and protein sequences of the <i>entF</i> gene	97
29.	The nucleotide and protein sequences of the <i>orfA3</i> gene	98

No.	Title	Page
30.	The nucleotide and protein sequences of the <i>orfA2</i> gene	98
31.	The nucleotide and protein sequences of the <i>entR</i> gene	99
32.	The dendrogram for <i>the entA</i> gene using the BLAST program	100
33.	The phylogenetic tree for the <i>entI</i> gene using the BLAST program	101
34.	The phylogenetic tree for the <i>entF</i> gene using the BLAST program	102
35.	The phylogenetic tree for the <i>orfA3</i> gene using the BLAST program	103
36.	The phylogenetic tree for the <i>orfA2</i> gene using the BLAST program	104
37.	The phylogenetic tree for the <i>entR</i> gene using the BLAST program	105
38.	White —blue colony screening of the transformed <i>E. coli</i> cells with recombinant pTZ57R/T on LB /Amp.plate supplemented with IPTG and X-Gal	107
39.	Rcombinant plasmids (pTZ57R/T) with entR, entF and orfA2) Lane No. (1) DNA molecular marker 1 kb, Lane No. (2) Vector pTZ57R/T DNA with insert ent R (753bp), Lane No. (3) Vector pTZ57R/T DNA with insert ent F(147bp), Lane No. (4) Vector pTZ57R/T DNA with insert orfA2 (216bp), Lane No.(5) Vector pTZ57R/T DNA without insert(2886bp) and Lane No.(6) DNA molecular	
	marker 1 kb	109

No.	Title	Page
40.	The PCR amplification of entR and ent F and double digestion Lane No. (2) Vector pTZ57R/T DNA with insert R (753bp), Lane No. (3) Sample R (753bp) after PCR +ve ,Lane No. (4) Vector pTZ57R/T DNA with insert R (753bp) after double digestion with EcoRI and BamH I (753 of the R gene + 39 bp from the plasmid), Lane No.(5)1 Kb ladder, Lane No. (6) 1 Kb ladder , Lane No. (7) Vector pTZ57R/T DNA with insert F (147 bp), Lane No. (8) Sample F (147 bp) after PCR Lane No. (9) Vector pTZ57R/T DNA with insert F (147 bp) after double digestion with EcoRI and BamH I (147 bp)	110
41.	PCR conformation of clone (ent F and orfA2) genes ,M 100bp lane 1 entF (147) bp positive control, lane2 entF clone after double digestion with EcoRI and BamH I, lane3 negative control, lane 4 orf A2 (216)bp positive control, lane 5 orfA2 clone after double digestion with EcoRI and BamH I, lane 6 negative control, and lane 7 ladder 100bp	111
42.	Antibiotic resistance patterns of <i>Lactococcus lactis</i> sub <i>lactis</i> (A and B) and <i>E. faecium</i> (C and D). Clear zone observed around the antibiotic disc indicating the sensitivity of the culture isolate	113
43.	The RAPD PCR pattern of the donor, recipient and transconjugants lines. Lane M: 1Kb ladder, lane 1-2-3-6-7-8) transconjugants, lane 4-9 <i>lactococcus lactis</i> donor, lane 5-10 <i>Enterococcus</i> AH2 recipient.	121
44.	The dendrogram demonstrating the relationships among the donor, recipient and transconjugants lines). Based on RAPD PCR analysis	123