

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المطومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% مئوية ورطوية نسبية من ٢٠-١٠٠ مئوية ورطوية نسبية من ٢٥-١٠٠ مؤية ورطوية نسبية من ٢٥-١٠٠ مؤية ورطوية نسبية من ١٥-١٠٠ مؤية ورطوية نسبية من ١٥-١٠٠ مؤية المنافلات الم

بعض الوثائـــق الأصليــة تالفـه

بالرسالة صفحات لم ترد بالاصل

MAGNETOHYDRODYNAMICS STABILITY OF TWO FLUIDS INTERFACE

Thesis Submitted For The Degree of
Doctor of Philosophy
In Science
(Applied Mathematics)

By
MERVAT HOSNI OTHMAN AHMED

Supervisors

Prof. Dr. Ahmed E. Radwan

Professor of Applied Mathematics
Mathematics Department,
Faculty of Science,
Ain Shams University

Prof. Dr. Samia S. Elazab

Professor of Applied Mathematics

Mathematics Department,

Women's University College,

Ain Shams University

Prof. Dr. Gaber M. Hassib

Professor of Radiation Physics
Chairman of National Center for Nuclear
Safety & Radiation Control (NCNSRC)
AEA, A.R.E.

Cairo - EGYPT

2002

į

Ain Shams University College of Women For Arts Sciences, And Education Mathematics Department

Name: Mervat Hosni Othman Ahmed

Degree: Ph.D. Thesis (Applied Mathematics)

Title of Thesis:

MAGNETOHYDRODYNAMICS STABILITY OF TWO FLUIDS INTERFACE

Thesis Supervisors:

1. Prof. Dr. Samia S. Elazab

Professor of Applied Mathematics Mathematics Department, Women's University College, Ain Shams University.

2. Prof. Dr. Ahmed E. Radwan

Professor of Applied Mathematics Mathematics Department, Faculty of Science, Ain Shams University.

3. Prof. Dr. Gaber M. Hassib

Professor of Radiation Physics Chairman of National Center for Nuclear Safety & Radiation Control (NCNSRC), AEA, A.R.E.

My Great Parents

My Lovely Brother

ACKNOWLEDGMENT

I am extremely grateful to Prof. Dr. Samia S. Elazab, Professor of Applied Mathematics, Department of Mathematics, Women's University College, Ain Shams University for her continuous helping from the beginning till the end of this thesis, discussions and encouragement. I would like to thank her for suggesting the problems involved in this work and tackling its difficulties throughout her supervision of this work.

I would like also to thank Prof. Dr. Ahmed E. Radwan, Professor of Applied Mathematics, Department of Mathematics, Acculty of Science, Ain Shams University, for his fruitful discussions and encouragement.

I am deeply grateful to Prof. Dr. Gaber M. Hassib, Professor of Nuclear Physics and Chairman of the National Center for Nuclear Safety and Radiation Control, A.R.E., for his valuable encouragement through his supervision of this work. I am greatly indebted to him for suggesting the problems involved in this work, stimulating advice and continuous help.

4

Ginally, my sincere thanks to the staff members of Mathematics Department, Women's University College, Ain Shams University.

LIST OF CONTENTS

	Contents	Page
	SUMMARY	i
	CHAPTER I	
I.	Introduction	
I.1	The concept of stability	;
I.2	Normal mode analysis	
I.3	Hydrodynamic stability	
1.4	Magnetohydrodynamics basic equations	
I.5	On the previous work	
I.6	The present work	
	CHAPTER II	·
П	MHD Stability of Self-Gravitating Superposed Fluids With Plane Interface	
II. 1	Introduction	
II.2	Formulation of the problem	
II.3	Equilibrium state	
II.4	Perturbation state	
II.5	Boundary conditions	:
II.6	Discussions	

	CHAPTER III
	Self-Gravitational Multiple Streaming Layers of Double Perturbed Interfaces
III. 1	Introduction
III.2	Formulation of the problem
III.3	Unperturbed state
III.4	Perturbation state
III.5	Boundary conditions
III.6	Limiting cases
III.7	Discussions
III.8	Non-streaming case
III.9	Streaming case
III.10	Conclusion
	CHAPTER IV
	Magnetogravitational Instability of A Streaming Fluid Cylinder Surrounded By Transverse Magnetic Field.
IV.1	Introduction
IV.2	Formulation of the problem
IV.3	Linearization and Solution
IV.4	Stability criterion
IV.5	Stability discussions
IV.6	General case
IV.7	Numerical discussion

	CHAPTER V	
	Interpretation of Radiation Effects on	
	Hydrocarbons	
V.1	Introduction	
V.2	A case study	
V.3	Comparison of products from liquid phase	
	and gas-phase RTC	
V.4		
V.5	Conclusion	
	REFERENCES	
	ARABIC SUMMARY	

ŧ.

ABSTRACT

ABSTRACT

The thesis is mainly concerned with some important stability problems of self-gravitating superposed fluid layers, fluid cylinder surrounded by self-gravitating tenuous medium and pervaded by transverse varying magnetic field. Chapter I discussed the concept of stability, hydrodynamic and magnetohydrodynamics stability. Chapter II concluded that the streaming has destabilizing influence on the medium and the self-gravitating force has stabilizing or destabilizing influence on the system of fluid. In absence of the streaming and self-gravitating forces, it was found that the magnetic fields had stabilizing as the model was acting upon the combined effect of the inertia, self-gravitating and electromagnetic forces, there will be magnetodynamic stable and unstable domains.

In Chapter III, it was concluded that the gravitational stable and unstable domains were presented graphically. Both the streaming speed and densities ratios of the triple fluid layers play important roles in destabilizing character of the present model.