

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Cairo University
Institute of Statistical Studies and Research
Department of Computer Science and Information

A Firewall Based Scheme for Computer Networks Security

Thesis

Submitted in Partial Fulfillment for the M.Sc.Degree in Computer Sciences and Information

By Omar Ibrahim Sherif

Supervised By

Prof. Dr. Sanaa El-Ola Hanafi Ahmed

Chairman of Information Technology Department Faculty of Computers and Information Cairo University

Dr. Osman Mohamed Ibrahim

Egyptian Armed Forces

Cairo University 2001

Acknowledgement

I would like to thank prof. Dr. Sanaa El_Ola H. Ahmed and Dr. Osman M. Ibrahim for their great assistance and constructive supervision. They have not denied me anything, time, effort, advices, and encouragement

I would also like to thank all the friends in my work (RDSC) for their help, specially Dr. A. H. Abou_Ali who gave me a big hand in acheiving this work.

My sincere thanks to my family, my wife, and my children for their patience, effort, and help for fulfilling this work.

APPROVAL SHEET

A Firewall Based Scheme for Computer Networks Security

Master Thesis

Submitted By Omar Ibrahim Sherif

This Thesis is for the Master Degree in Computer Science and Information, Department of Computer Science and Information, Institute of Statistical Studies and Research, Cairo University, Has Been Approved By:

Name

Signature

Prof. Dr. Mohamed Zaki

M. Zaka

Prof. Dr. Sanaa El-Ola Hanafi

S.H. A (med

Dr. Abdel Aziz Khamis

A.Khamin

Date: 3/12/2001

STATEMENT

I certify that this work has not been accepted or submitted in candidature for any other degree.

Any portion of this thesis for which I am indebted to other sources are mentioned and explicit references are given.

Omar Ibrahim Sherif

Date: 3/12/2001

Abstract

Many organizations are in the process of connecting to the Internet to take the advantage of Internet services and resources. While Internet connectivity offers enormous benefits in terms of increased access to information, Internet connectivity is not necessary a good thing for sites with low levels of security. Firewalls are effective type of network security. Most of the firewalls protect the private network by controlling the traffic between the Internet and the private network based on the header information in the packets or the commands in the payload part of the packets.

In this thesis we propose a module, which can be added to the firewall to extend the firewall functionality, by controlling the communications based on the actual contents of messages that is to more secure the critical information of certain organization from being sent through the Internet.

The module depends on filtering the messages sent through the Internet according to some keywords predetermined to be a clue for the critical information of the organization.

Besides, we propose an artificial intelligence based intrusion detection module to be used in detecting and preventing the misuse intrusions. This module is added to the firewall to strengthen the firewall that is by detecting the malicious behavior of the new attackers using a new methodology of attacking the networks.

Keywords: -

Internet security, Firewalls, Packet filtering, Proxy services, Intrusion detection.

Contents

CHAPT	ER 1:Introduction	1
CHAPT	ER 2: Internet Security: An Overview	6
2.1	Introduction	7
2.2	Networking and ISO/OSI Reference Model	7
2.3	Internet	8
	2.3.1 Transmission Control Protocol	10
	2.3.2 Functions of TCP/IP layers	10
	2.3.3 Ports	12
	2.3.4 Common Internet Services	14
2.4	Internet Security	16
	2.4.1 Internet security problems	20
	2.4.1.1 TCP/IP Protocol problems	
	2.4.1.2 Forged E mail	21
	2.4.1.3 Monitoring Network Traffic (Snooping)	22
2.5	Network security Policy	22
	2.5.1 Network Service Access Policy	23
	2.5.2 System Specific Policies	
	2.5.3 Firewall Design Policy	24
	2.5.4 Security Strategies	25
2.6	Summary	27
СНАРТ	TER 3: Firewalls	28
3.1	Introduction	29
	General Capabilities and limitations of Firewalls	
	Types of Firewalls	
	3.3.1 Packet Filtering Firewalls	
	3 3 7 Provy Services	

3.3.3 Circuit-level Proxy	37
3.3.4 Stateful Inspection Technique	38
3.4 Different Firewall Architectures	39
3.4.1 Dual-Homed Host architecture	39
3.4.2 screened Host architecture	41
3.4.3 Screened Subnet architecture	43
3.5 Summary	44
CHAPTER 4: Evaluating a Firewall Product	46
4.1 Introduction	47
4.2 Selection Criteria	47
4.2.1 Security Features	47
4.2.2 Implementation Features	
4.2.3 User Features	51
4.3 Applying Criteria to Commercial Firewalls	52
4.3.1 Check-Point Firewall (FireWall-1)	52
4.3.2 Gauntlet Firewall 6.0	58
4.3.3 Comparison between the two products	61
4.4 Conclusion	63
CHAPTER 5: Extending Traditional Firewall	
Functionality	64
5.1 Introduction	65
5.2 Why the extension	65
5.3 Natural Language Processing	66
5.3.1 Problems with Natural Language Systems	66
5.4 Explaining the Module	
5.4.1 Simple Mail Transfer Protocol (SMTP)	
5.4.2 The SMTP Procedure	71

5.5 Methodology	74
5.5.1 Examining the message	75
5.5.2 Search Algorithm	75
5.6 Case Study	78
5.6.1 Results	80
CHAPTER 6: Adding an Intrusion Detection Module	
to the Firewall	82
6.1 Introduction	83
6.2 Introduction to Intrusion Detection	83
6.2.1 Approaches of Intrusion Detection	83
6.3 Methods Of Intrusion Detection	84
6.3.1 State Transition Analysis	84
6.3.2 Bayesian Alarm Network	85
6.3.3 Rule-Based Expert Systems	86
6.4 Expert Systems in Detecting SYN Flood Attack	87
6.4.1 TCP/IP Connection Establishment	88
6.4.2 SYN Flooding Attack Occurrence	88
6.4.3 Detection the SYN Flooding Attack	89
6.4.3.1 TCP Dump Traffic Monitor	89
6.5 . Procedure	90
6.5.1 Rule Set for Detecting SYN Flooding Attack	91
6.6 Case Study	93
6.6.1 Results	96
6.7 Conclusion	96
CHAPTER 7: Conclusion and Future work	98
References	
Appendix A: Visual Basic Forms Results	

CHAPTER 1 Introduction

Introduction

The Internet is spreading very rapidly all over the world. Connecting to the internet helps exchanging information between all people connected to the internet .In spite of these benefits, the internet could be the source of a lot of problems affecting the organizations connected to it [1]. These problems, or security threats can be categorized into two main categories, the first category includes the problems affecting the confidentiality of the data, or simply thefting the data during traveling through internet .The second category includes the problems affecting the network resources such as computer, gateways, and routers. These problems are caused by malicious users who are granted illegal access to some private network through highly sophisticated tools. These users are called hackers or attackers.

The success of attacker in attacking the private networks depends in some types of attack in some bugs in the operating system, which implements the network protocol. Some expert attackers exploited these bugs and developed tools for attacking the private networks through the Internet. Some success depends on the ignorance of some users principles.

Several possible solutions to these problems have been proposed and implemented. Some of these solutions are proposed by Bellovin [2,3], who proposed a solution for the security problems in TCP/IP protocol. Some of these problems are: TCP sequence number attacks, and source routing. These solutions depend on some change on TCP/IP protocol versions. The newest solutions now for protecting the local networks against security problems or attackers are the firewall systems.

Firewalls are set of hardware, software or combination of both which acts as a single point of connection between the private network