Coagulopathy Management in Liver Transplantation

Essay

Submitted for partial fulfilment of Master degree of Anaesthesia

By
Osama Fawzy Abd El-hady Ibrahim
M.B.B.Ch Cairo University

Under supervision of

Prof. Dr. Sherif Farouk Ibrahim

Professor of Anaesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Niveen GergesFahmy

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Shaimaa Mohamed Samir Ezzat

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2015

وقُلِ اعْمَلُوا فَسَيَرَى اللهُ عَمَلَكُمْ وَقُلِ اعْمَلُوا فَسَيَرَى اللهُ عَمَلَكُمْ ورَسُولُهُ والمُؤْمِنُونَ

صدق الله العظيم

سورة التوية آية (105)

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Sherif Farouk Ibrahim**, Professor of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Dr. Niveen GergesFahmy**, Lecturer of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams university for adding a lot to this work by her experience and for her keen supervision.

I am also thankful to **Dr. Shaimaa Mohamed Samir Ezzat**, Lecturer of of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for her valuable supervision, co-operation and direction that extended throughout this work.

I am extremely sincere to myfamily who stood beside me throughout this work giving me their support.

Words fail to express my love, respect and appreciation to my wifefor her unlimited help and support.

Osama Fawzy Abd El-hady Ibrahim

List of Contents

	Page
List of Abbreviations	i
List of Figures	iii
Introduction	1

Aim of the V	Vork	3
Chapter 1:	Anatomy of the Liver	5
Chapter 2:	Pathophysiology of coagulopathy in liver diseases	15
Chapter 3:	Stages of hepatic transplantation	30
Chapter 4:	Management of coagulation abnormalities Liver Transplantation	
Summary		67
References		70
Arabic Sum	mary	

List of Abbreviations

ADP : Adenosine diphosphate

APTT : Activated partial thromboplastin time

Ca⁺⁺ : Calcium ions

cGMP : Cyclic monophosphate

CTXA2: Thromboxane A2

DIC : Disseminated intravascular coagulationDIC : Disseminated intravascular coagulation

DSE : Dobutamine stress echoDVT : Deep vein thrombosisGABA : g-aminobutyric acid

GFR : Glomerular filtration rate

HLE: Heparin-like effect

HMWK: High-molecular-weight kininogen

HPS : Hepatopulmonary syndrome

HRS : Hepatorenal syndromeICT : Intracardiac thrombosis

ICU : Intensive care unit

INR : International Normalized RatioISI : International Sensitivity Index

IVC : Infrahepatic vena cava

IX : Chrimstmas factor, serine protease

LT : Liver transplantation

MAC : Minimum alveolar concentration

MCF : Maximum clot firmness

MELD : Mayo End-Stage Liver DiseaseOLT : Orthotopic liver transplantationPAI-1 : Plasminogen activator inhibitor-1

PAP : Pulmonary artery pressure

PE : Pulmonary embolism

PFA-100: Platelet Function Analyzer-100

List of Abbreviations(Cont.)

PGI2 : Prostaglandin

PL: Platelet membrane phospholipid PPH: Portopulmonary hypertension

PRS : Postreperfusion syndrome

PT : Prothrombin time

PTT : Partial thromboplastin time

RBC : Red blood cell

RCTs : Randomized controlled trials

TEE : Transesophageal echocardiography

TEG : Thromboelastogram or thromboelastrometry

TF : Tissue factor

TFPI : Tissue factor pathway inhibitortPA : Tissue plasminogen activatort-PA : Tissue plasminogen activator

TPO: Thrombopoietin

UCLA : University of California, Los Anglos

V/Q : Ventilation–perfusion

VII : Stable factor, serine protease

VVB : Venovenous bypass

XI : Plasma thromboplastin, antecedent serine protease

XII : Hageman factor a serine protease

XIII : Fibrin stabilizing factor, a transglutaqminase

List of Figures

Fig.	Title	Page
1	Anatomy of the liver.	6
2	Network of branching and rebranching blood	7
	vessels in the liver.	
3	Morphology of the liver.	8
4	Schematic representation of the functional	11
	anatomy of the liver.	
5	The functional division of the liver and the	11
	hepatic segmentation (in vivo position of the	
	liver).	
6	Operative ultrasound anatomy: the three main	13
	hepatic veins.	
7	Operative ultrasound anatomy: the main	14
	scissura and the middle hepatic vein.	
8	The three pathways that make up the classical	19
	coagulation pathway.	
9	Schematic diagram for TEG.	60

Introduction

Transfusion of blood products is common in liver transplantation. It significantly influences patient outcomes and the viability of the transplanted organ. Severe bleeding in orthotopic liver transplantation (OLT) results from a combination of blood loss of surgical origin and diffuse bleeding that requires a systemic approach for treatment (Sabate et al., 2012).

Advanced cirrhosis produces a complex balance between procoagulant and antihemostatic actionsthat is characterized by a decreased levels of hemostatic proteins, low synthesis of anticoagulants (ATIII, protein C), thrombocytopenia, increased level of von Willebrand factor and factor VIII, increased nitric oxide and prostacyclin as well as a subtle equilibrium between tissue plasminogen activator (t-PA) and Plasminogen activator inhibitor-1 (PAI-1) (**Tripodi et al., 2011**).

There are limited correlations between conventional hemostasis and coagulation tests with bleeding during liver transplantation. The risks of bleeding and transfusion in liver transplantation seem to be determined by patient age, severity of liver disease according to the value of Model for End-stage Liver Disease, preoperative hemoglobin and plasma fibrinogen values (Mangus et al., 2007).

☐ Introduction and Aim of The Work

Thromboelastogram or thromboelastrometry (TEG) can be used to monitor the risk of bleeding or of thrombosis which coexist during surgery and when empirical treatments are applied. In the cirrhotic patient the TEG pattern is characterized by decreases in maximum clot firmness (MCF), clotting time, and clot formation time that show good correlations with fibrinogen and platelets (**Tripodi et al., 2009**).

Reduction of blood product requirements has been achieved in liver transplantation; however, the procedure may still be associated with massive bleeding (Roulet al., 2011). There is no evidence of clinical improvement by prophylactic correction of clotting factors; however, decreased plasma fibrinogen levels influence blood product requirements(Costa et al., 2011).

Concern about unwanted events is a major limitation of prophylactic therapy to normalize plasma fibrinogen levels, even if there has not been communicated any thrombosis or elevations of d-dimers related to hypofibrinogenemia correction(**Farriols Danes et al., 2008**).

Criteria to identify patients who could benefit from prophylactic treatment has not been presented, because this effect not only depends on the preoperative patient condition but also on donor liver quality as well as surgical conditions during the hepatectomy and anhepatic stages (McCluskey et al., 2006).

□ Introduction and Aim of The Work

Guidelines for antifibrinolytic therapy are the clot firmness in TEG or, alternatively, when diffuse bleeding is detected, a fibrinogen value less than 1 g/L. Antifibrinolytic drugs must not be used in patients with a medical history of thrombotic events, acute liver failure, or biliary cirrhosis. Data on thromboembolic complications in OLT are inconclusive(Molenaar et al., 2007).

Thrombin generation is limited in severe thrombocytopenia, so that it seems reasonable to administer platelets when active bleeding coexists with a platelet count below 50, 000/mm (**Tripodi et al., 2006**).

A note of caution should be mentioned when administration of high volumes of hemoderivates and antifibrinolytics do not correct severe bleeding; a consumption coagulopathy with secondary fibrinolysis should be suspected. Treatment of these patients must be based on correcting the underlying cause, mostly related to tissue hypoxia due to critical hypoperfusion (Gologorsky et al., 2007).

Aim of the work

To discuss the most recent trends in the management of coagulation in patients undergoing liver transplantation.

Anatomy of the Liver

The liver is the largest organ of the human body, weighs approximately 1500 g, and is located in the upper right corner of the abdomen. The organ is closely associated with the small intestine, processing the nutrient-enriched venous blood that leaves the digestive tract. The liver performs over 500 metabolic functions, resulting in synthesis of products that are released into the blood stream (e.g. glucose derived from glycogenesis, plasma proteins, clotting factors and urea), or that are excreted to the intestinal tract (bile). Also, several products are stored in liver parenchyma (e.g. glycogen, fat and fat soluble vitamins) (*Bismuth*, 1982).

Almost all blood that enters the liver via the portal tract originates from the gastrointestinal tract as well as from the spleen, pancreas and gallbladder. A second blood supply to the liver comes from the hepatic artery, branching directly from the celiac trunk and descending aorta. The portal vein supplies venous blood under low pressure conditions to the liver, while the hepatic artery supplies high-pressured arterial blood(*Lewis and Gray, 2000*).

Since the capillary bed of the gastrointestinal tract already extracts most O_2 , portal venous blood has a low O_2 content. Blood from the hepatic artery on the other hand, originates

directly from the aorta and is, therefore, saturated with O_2 . Blood from both vessels joins in the capillary bed of the liver and leaves via central veins to the inferior caval vein (*Sear*,2002).

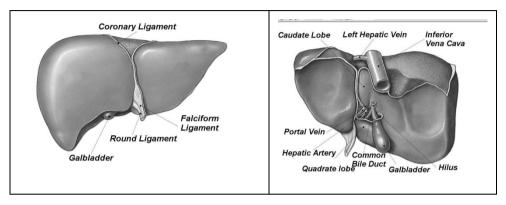
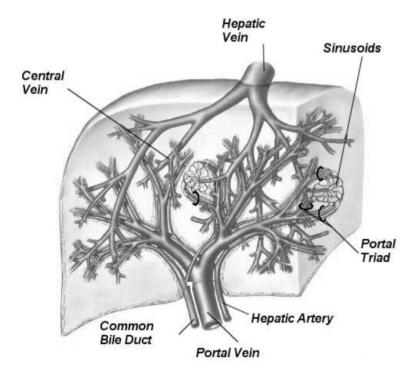



Figure 1: Anatomy of the liver (Agur and Lee and Grant, 1999).

Basic liver architecture:

The major blood vessels (portal vein and hepatic artery), lymphatics, nerves and hepatic bile duct communicate with the liver at a common site, the hilus. From the hilus, they branch and rebranch within the liver to form a system that travels together in a conduit structure, the portal canal from this portal canal, after numerous branching, the portal vein finally drains into the sinusoids, which is the capillary system of the liver. Here, in the sinusoids, blood from the portal vein joins with blood flow from end-arterial branches of the hepatic artery. Once passed through the sinusoids, blood enters the collecting branch of the central vein, and finally leaves the liver via the hepatic vein. The hexagonal structure with, in most cases, three portal canals in its corners draining into one central vein, is defined as a lobule. The

lobule largely consists of hepatocytes (liver cells) which are arranged as interconnected plates, usually one or two hepatocytes thick. The space between the plates forms the sinusoid. A more functional unit of the liver forms the acinus. In the acinus, the portal canal forms the center and the central veins the corners. The functional acinus can be divided into three zones: 1) the periportal zone, which is the circular zone directly around the portal canal, 2) the central zone, the circular area around the central vein, and 3) a midzonal area, which is the zone between the periportal and pericentral zone (*Parks et al.*, 2000).

Figure 2: Network of branching and rebranching blood vessels in the liver(*Guyton*, 2006).

Morphological Anatomy

The first description of the anatomy of the liver is what we can term the morphological anatomy, based on the surface features of the organ. On the anterior surface, the round ligament and the falciform ligament divide the liver into two lobes: the left and right lobes. On the inferior surface, the umbilical fissure, the gallbladder bed, and the hilus limit the quadrate lobe. Behind the hilus is the spigelian lobe. In total, there are two main lobes and two accessory lobes corresponding to the true definition of a lobe: "part of the parenchyma limited by fissures or grooves" (Stedman's Medical. Dictionary). However, this morphological description of the liver is inadequate to guide the surgeon in performing anatomical surgery (*Strasberg*, 1997).

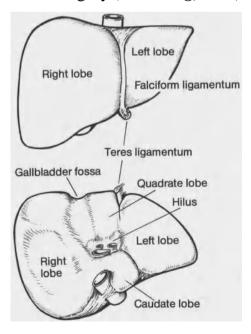


Figure 3: Morphology of the liver (*Strasberg*, 1997).