

ROLE OF CT PERFUSION IN ADULT BRAIN TUMORS

(Diagnosis, grading and follow up)

Thesis

Submitted for partial fulfillment Of the M.D. Degree in Radio diagnosis

By

Mohamed Mamdouh Mohamed

M.B.B.Ch, M. ScRadiodiagnosis

Under Supervision of

Prof. Dr. HossamFahmyAbd El Hamid

Professor of Radiodiagnosis
Faculty of medicine
Ain shams University

Prof. DR. Rania AlyMaarouf

Assistant professor of Radiodiagnosis Faculty of medicine Ain Shams university

Dr. HossamMoussaSakr

Assistant professor of Radiodiagnosis Faculty of Medicine AinShamsUniversity

Dr. Hasan Mohammad Jalalod'din

Assistant professor of neurosurgery Faculty of Medicine AinShamsUniversity

Faculty of MedicineAin Shams University 2015

Acknowledgment

I would like to express my deep gratitude and sincere thanks to **Prof. Dr. HossamFahmy**, Professor of Radiodiagnosis, Ain Shams, Faculty of Medicine, for her guidance, encouragement and valuable advice throughout the whole work, without her continuous support, this study could have never been completed. It is really a great honor for me to conduct this under her supervision.

I appreciate too much the guidance offered by **Prof. Dr. Rania Aly**Professorof Radiodiagnosis, Ain Shams, Faculty of Medicine, for her kind support, continuous help and great aid.

I am really grateful to **Dr. HossamMoussaSakr.** Assistant professor of Radiodiagnosis, Ain Shams University for his sincere guidance and valuable advice.

I am really grateful to **Dr. Hasan Mohammad Jalalod'din.** Assistant professor of neurosurgery, Ain Shams University for his sincere guidance and valuable advice.

I would like to dedicate this thesis to my Father and my Mother; to them I will never find adequate words to express my gratitude.

Also my beloved wife and, for her continuous support and encouragement.

Finally tomy little son Marwan

LIST OF CONTENTS

Pag	e
List of Tablesii	
List of Figuresiii	
List of Chartsv	
List of Abbreviations vi	
Introduction1	
Aim of the work	
Review of Literature	
1. Technical aspect 4	
2. Anatomy of the brain15	,
3.Pathology of brain tumor35	,
Patients and Methods 47	,
Illustrative Cases 57	,
Results	1
Discussion 12	7
Summary13	7
Conclusion 13	8
References	9
Arabic summary 14	ŀ7

LIST OF TABLES

Table	Title	
no.		no.
1	Segments and branches of the major arteries of cerebral	
	circulations	29
2	Comparison between the two groups regarding the median	
	CT perfusion parameters	114
3	Summary the results of Wilcoxon Rank Sum test for	
	groups I and II	116
4	Summary the results of Wilcoxon Rank Sum test for	
	groups I and contralateral normal brain	119
5	Summary the results of Wilcoxon Rank Sum test for	
	groups I and normal contralateral brain	121
6	shows different parameter of diagnostic validity test	
	comparing the CBV and PS	124

LIST OF FIGURES

Fig.	Title Page	
no.	no.	
1	CT perfusion maps in a healthy adult show normal perfusion 8	
2	CT perfusion maps in a healthy adult show normal perfusion 9	
3	CT perfusion maps in a healthy adult show normal perfusion 9	
4	Major Regions of the Brain	
5	Major vessels of the Brain	
6	Carotid Circulations	
7	An inferior view of the circle of Willis	
8	Regional vascular territories	
9	Anatomical Diagram of ICA	
10	Normal CT Brain Anatomy	
11	Normal CT Carotid Angiography	
12	Normal CT Cerebral Angiography	
13	Normal neural structure	
14	Low-grade diffuse astrocytoma	
15	Anaplastic astrocytoma42	
16	Glioblastoma multiform	
17	CT perfusion maps in a healthy adult show normal perfusion 52	
18	CT perfusion maps in a healthy adult show normal perfusion 53	
19	CT perfusion maps in a healthy adult show normal perfusion 54	
20	Dynamic CT of the brain tumor case 1	
21	CT perfusion of case 1	
22	Dynamic CT of the brain tumor case 2	
23	CT perfusion of case 2	
24	Dynamic CT of the brain tumor case 3 70	
25	CT perfusion of case 3	
26	Dynamic CT of the brain tumor case 4	

Fig. no.	Title	Page no.
27	CT perfusion of case 4	78
28	Dynamic CT of the brain tumor case 5	82
29	CT perfusion of case 5	84
30	Dynamic CT of the brain tumor case 6	87
31	CT perfusion of case 6	89
32	Dynamic CT of the brain tumor case 7	92
33	CT perfusion of case 7	94
34	Dynamic CT of the brain tumor case 8	96
35	CT perfusion of case 8	98
36	Dynamic CT of the brain tumor case 9	101
37	CT perfusion of case 9	104
38	Dynamic CT of the brain tumor case 10	107
39	CT perfusion of case 10	110

LIST OF CHARTS

Chart no.	Title	Page no.
1	Compare between the two groups regarding the median BV and PS respectively	61
2	Compare between the two groups regarding the median BF	65
3,4,5	compare between the two groups regarding the value of BF BV and PS respectively	66
6,7	Compare between the group I and the normal contra later brain regarding the value of BV and PS respectively	
8,9	Compare between the group II and the normal contra later brain regarding the value of BV and PS respectively	
10	compare between the two groups regarding the value of BF BV and PS respectively	42

LIST OF ABBREVIATIONS

3D	Three dimensional
AUC	Area under the curve
BF	Blood Flow
\mathbf{BV}	Blood Volume
CT	Computed tomography
KV	Kilo volt
Kg.	Kilograms
Lbs	Pounds
Ma	Milliamper
MDCT	Multi-detector computed tomogram
MIP	Maximum intensity projection
ml/min/100g	Milli-liters per minute per 100 grams
MTT	Mean Transit Time
mSv.	millisievert
NDL;	non diagnostic line
P +	The predictive value for a +ve test
P-	The predictive value for a -ve test
PS	Capillary permeability surface area product
PC	Personal computer
P value	Predictive value
ROI	Region of interest
SD	Standard deviation
SMV	Superior mesenteric vein
Sn.	Diagnostic Sensitivity
Sp.	Diagnostic Specificity
SPSS	Statistical package for social sciences
MVD	microvascular density

Introduction

Since its introduction by Godfrey Hounsfield in 1971, CT has largely been recognized as a powerful imaging tool for demonstrating internal anatomy. However, CT also has the ability to quantify physiological processes, as was first shown in 1980 when Axel published a methodology for the determination of cerebral blood flow by rapid-sequence CT. At that time, the speed of image acquisition and data processing of conventional CT systems was too slow for the technique to become widely accepted. (*Padhani and Choyke 2006*).

The development of faster, spiral CT systems in the 1990s enabled the development of methodologies that could measure tissue perfusion and other physiological processes on conventional CT systems that were widely available. Interest in this area has been stimulated further, by the introduction of multislice CT and by the release of commercial perfusion CT software from a number of major equipment manufacturers. The first reported assessment of tumor physiology by conventional spiral CT was in 1993, which was a study of hepatic perfusion, including patients with metastases. (*Padhani and Choyke 2006*).

Idea of CT perfusion

The main aspect of tumor biology that is accessible with CT is the physiology of the tumor vasculature. CT measurements of perfusion and other aspects of vascular physiology can therefore provide a noninvasive imaging marker for tumor angiogenesis in vivo. Angiogenesis has emerged as an important topic within oncology not only because tumors are dependent on vascularization for their ability to grow and metastasize, but also because angiogenesis is a potential target for anticancer therapeutic agents. (*Padhani and Choyke 2006*).

To measure tumor perfusion with CT, contrast is injected intravenously, to 'label' the blood. Assuming that the injected contrast is uniformly mixed with blood, tracing blood through the tumor circulation is equivalent to tracking a bolus of contrast through the tumor (*Miles and Cuenod 2007*).

The fundamental processes underlying CT measurement of tumor perfusion is the transport by blood flow of an intravenously administered iodinated contrast agent to the tumor and exchange by diffusion of these contrast molecules between the intravascular space and the extravascular interstitial space (*Miles and Cuenod* 2007).

AIM OF THE WORK

The aim of this work is to evaluate the clinical application of CT perfusion as a non-invasive imaging tool in grading of adult brain tumor and evaluation of recurrence of tumor after surgical excision

Technical aspects of CT perfusion:

1) Physical aspects of CT perfusion:

CT can assess vascular physiology by measuring the temporal changes in X-ray attenuation that occur in major blood vessels and tissues after intravenous administration of conventional iodinated X-ray contrast agents. The measured increase in attenuation, quantified in Hounsfield units (HU), is proportional to the concentration of iodine. (Padhani and Choyke 2006).

2) Physiological Parameters measured by CT perfusion:

- I. Blood flow (BF): This is the flow rate of blood within the vascular space in a tissue (e.g. tumor) region, expressed in units of milliliters per minute per 100 g of tissue. The blood flow measured with CT includes flow in large vessels, arterioles, capillaries, venules, and veins. (Miles and Cuenod 2007).
- II. **Blood volume** (**BV**): This is the volume of blood actually flowing within the vascular space in a tissue region, expressed in milliliters per 100 g of tissue. Any stagnant pool of blood will not be included in the blood volume. It is measured in units of ml/100g (**Miles and Cuenod 2007**).

- III. Mean transit time (MTT): This is the average time taken by blood elements to traverse the vasculature from the arterial end to the venous end in a tumor. If the perfusion pressure is high, blood elements are traveling at a higher velocity, resulting in a shorter mean transit time than when perfusion pressure is low. In this sense, mean transit time is a measure of perfusion pressure. Mean transit time is measured in seconds (Miles and Cuenod 2007).
- IV. Capillary permeability surface area product (PS): it is the product of permeability and the total surface area of capillary endothelium in a unit mass of tumor (usually 100g), and hence is the total diffusional flux across all capillaries. It is measured in units of ml/min/100g. In other words, it is the unidirectional flux of contrast from blood plasma to interstitial space (Miles and Cuenod 2007).

3) The protocol of performing CT brain perfusion study:

The theory behind this technique is the central volume principle, which relatescerebralblood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) in the following equation: CBF-CBV/MTT.

Perfusion studies are obtained by monitoring thefirst pass of an iodinated contrast agent bolus through the cerebral vasculature. There is alinear relationship between contrast agent concentration and attenuation, with the contrastagent causing a transient increase in attenuation proportional to the amount of contrast agent in a given region. (Wintermark Met al, 2001).

Contrastagent time-concentration curves are generated an arterial region of interest(ROI), a venous ROI, and in each pixel Deconvolution of arterial and tissue enhancement (Wintermark Met al, 2001).

Perfusion CT scans are obtained at our study by using a multi-detector (DUAL **ENERGY** rowscanner 128 SIMENES). After unenhanced CT of the whole brain, four adjacent 5-mm-thicksections are selected starting at the level of the basal ganglia. At this level, all three supratentorial vascular territories are visualized. (Eastwood JDet al, 2001) Fifty milliliters of a nonionic contrastagent (300 mg of iodine per milliliter)is injected at a rate of 4 mL/sec. At 5 secondsafter initiation of the injection, a cine(continuous) scan is initiated with the following technique: 80 kVp, 190– 200 mA, 4-5-mm sections, 1-second per rotation for a duration of 50 seconds. (Eastwood JDet al, 2001)

The scans are obtained at 5 mm rather than 10 mm to lessen beamhardeningartifacts in the brain. The reformatted 10-mm-