

Developing an Algorithm for Visualizing Large Terrain Environments in Real-Time

A thesis submitted to the Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University.

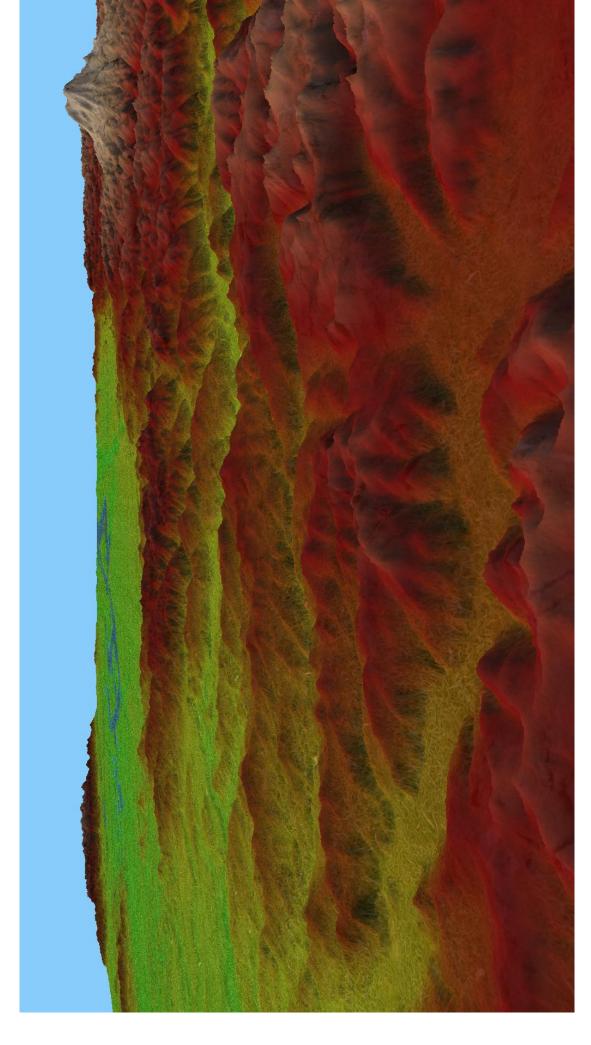
In partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences.

By:

Mohammad Ahmad Yusuf Al-Afandy

B.Sc. in Computer and Information Sciences (2006)

Under the supervision of:


Prof. Dr. Mostafa Gadal-Haqq M. Mostafa

Professor of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University

Prof. Dr. Taha Ibrahim Bassyouny Elarif

Professor of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University

The Puget Sound area with $4097 \times 4097 \times 4097$ 16-bit samples and inter-pixel spacing of 40 meters rendered by the designed algorithm

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful

All praises to Allah for giving me the strength and blessing to complete writing this thesis.

My sincere appreciation and gratitude to Prof. Mostafa Gadal-Haqq M. Mostafa for all his efforts, and the time that he has devoted to support and assist me throughout this thesis creation.

I would also like to thank Prof. Taha Ibrahim Bassyouny Elarif for his help and guidance.

I thank my family for their support especially my wife Doaa who contributed directly and indirectly to this research and helped with most of the logistics.

Abstract

Terrain rendering has many important applications in the fields of modeling, geographic information systems, videos games, space modeling, flight simulation, synthetic vision systems (SVSs) and others. Due to this, it has been an active area of research for decades. Terrain rendering methods have been devised to handle the rendering of massive terrain datasets in real-time. These methods are designed to deal with large datasets at interactive frame rates to render terrains covering large areas in real-time.

In this research, several approaches to this problem are investigated and based on this investigation, a quad-tree level-of-detail (LOD) multi-activity based method for real-time terrain rendering is presented. The method uses two concurrent activities running in parallel. The errors activity decides what to be rendered and the rendering activity do the actual rendering. The two activities communicate with each other via a LOD hierarchy that is constructed by the errors activity and stored in main storage and each one of them is assigned a CPU thread and a GPU context. The rendering activity then renders the whole terrain as small blocks with different sizes using reusable vertex and index buffers with different scaling and translation parameters based on blurred versions of the height-field texture that are calculated on-the-fly on a vertex shader. Discontinuities are handled using incremental constant vertex and index buffers that cover all possible cases of LOD differences ensuring a tight mesh of terrain geometry where each LOD difference adds a number of

indices from the same index buffer used to handle all cracks.

A hybrid fuzzy texturing method that combines real and artificial details is also presented. It is based on an automatic fuzzy system for blending different detail textures with the terrain base texture to give varying artificial details based on terrain geometry. The original base color that comes from the real terrain texture is still preserved though by using a weighting scheme that favors the base color.

The results of the conducted case study show that although the proposed Hierarchical Error Map method achieves expected interactive frame rates at guaranteed very small screen-space errors of 1, 2, and 3 pixels, the CPU usage is been kept minimum due to the proposed notion of errors texture that is calculated entirely on the GPU.

Contents

Lis	st of	Figures	5
Lis	st of	Tables	11
1	Intr	oduction	17
	1.1	Overview	18
	1.2	Important Applications	20
	1.3	Challenges	24
	1.4	Problem Statement	29
	1.5	Contribution	30
	1.6	Thesis Organization	31
2	Bac	kground and Related Work	33
	2.1	Terrain Representation	33
	2.2	Ray-tracing Methods	36
		2.2.1 Ray-tracing Methods Survey	39
	2.3	Triangulation Methods	41
		2.3.1 Wavelet Methods	44
		2.3.2 Geometry Clipmaps	51
		2.3.3 Diamond Methods	58
		2.3.4 Quad-tree Methods	61
3	The	Hierarchical Error Map Method	89
	3.1	Overview	89
	3 2	Tree Building Activity	94

	3.3	Rendering Activity	100
		3.3.1 Terrain Geometry	101
	3.4	Discontinuities Management	104
	3.5	Activities Synchronization	110
	3.6	Scalability	111
	3.7	Augmented Fuzzy Terrain Texturing	112
		3.7.1 Basic Texturing	112
		3.7.2 Proposed Texturing Method	113
4	Res	ults and Discussion	119
	4.1	CPU Usage Analysis	119
	4.2	Frame-rate Analysis	121
	4.3	GPU Memory Usage	134
	4.4	The proposed Augmented Fuzzy Terrain Texturing Visual	
		Quality	135
5	Con	clusion and Future Work	141
$\mathbf{R}_{\mathbf{c}}$	efere	nces	145
\mathbf{A} l	bstract (Arabic)		

List of Figures

1.1	Classical Wooden models	17
1.2	Modern Virtual 3D Model	18
1.3	3D City Model	19
1.4	Manipulating a 3D Model	19
1.5	Traditional Airplane Cockpit	20
1.6	Enhanced Vision Systems	21
1.7	Flying Blind	22
1.8	Flying with SVS	22
1.9	A close-view of a SVS Cockpit	23
1.10	Distant cockpit view of a SVS	23
1.11	Tunnel Guidance	24
1.12	Satellite Map	24
1.13	Topological Map	25
1.14	Topographical Map	25
1.15	GIS Maps	26
1.16	Two different 3D terrain models	27
1.17	The most basic terrain rendering algorithm that takes as	
	input (a) a height-field and (b) a base texture and renders	
	c) the output 3D terrain model	28
2.1	A TIN	34
2.2	A Height-field	35
2.3		36
2.4	Ray Intersection Test	36

2.5	Hierarchical Ray-tracing	37
2.6	Trace Miss	38
2.7	Aliasing Artifacts	38
2.8	(a) Input Height-field (b) Converted Polygons	41
2.9	(a) Input Color Grid (b) Output	42
2.10	A terrain block in various LODs	43
2.11	Discontinuities as cracks in textured and wire-frame modes	43
2.12	Coefficients of two levels of wavelet transform	44
2.13	Wavelet reconstructed approximations	45
2.14	Wavelet reconstructed details	46
2.15	Creating the wavelet LOD hierarchy from [38]	47
2.16	Terrain Decomposition from [52]	47
2.17	Different Approximations based on different error thresh-	
	olds from [52]	48
2.18	The output of the method used in [52] integrated into a	
	SVS	49
2.19	The coefficients tree and the resulting coefficients texture	
	used in [14]	49
2.20	Adjacency relations used in [17]	50
2.21	Tesselated output of [35]	51
2.22	Transitional regions to eleminate popping visual artifacst	
	$[35] \dots \dots$	52
2.23	Transition Morphs in [35]	53
2.24	Frustum culling in [35]	53
2.25	Terrain Synthesis in [35]	54

2.26	Clipmaps Pyramid from [2]	55
2.27	Clipmap Ring used in $[2]$	55
2.28	Spherical Clipmaps in [7]	56
2.29	Different diamond configurations	58
2.30	Diamonds Various LODs from [25]	58
2.31	Diamonds Various LODs from [19]	59
2.32	Mesh construction from a DAG of Diamonds [53] \dots .	61
2.33	Terrain generated using an adaptive Quad-tree	62
2.34	A restricted and an unrestricted Quad-tree	63
2.35	Crack-free triangulation	63
2.36	Geometry mipmaps and cracks	64
2.37	Adaptive LODs from [44]	67
2.38	The rendering algorithm used in [6]	71
2.39	Cracks handling between two blocks with different LODs	
	from [6]	72
2.40	A terrain patch that is divided into 5 regions from $[6]$	73
2.41	Nested Mesh Hierarchy used in [46]	75
2.42	Pyramidal representation used in [56]	80
2.43	A progressive patch (a) at a low level and (b) its active	
	vertices to split and reach (c) the next level and (d) its	
	triangulation from $[56]$	81
2.44	Sharp edges handling with texture blending from [56]	82
2.45	Adaptive subdivision from [27]	85
2.46	Handling cracks in [27]	86

3.1	A view of a 9×9 vertices terrain: (a) as a mesh and (b)	
	as a quad-tree with $K_b=3$ terrain blocks represented as	
	leaves	90
3.2	The Hierarchical Error Map Method System Architecture.	91
3.3	(a) A single mesh with $K_b = 3$ in used for rendering all terrain blocks of (b) a terrain with 9×9 vertices. The small shaded area is of LOD 0 and is rendered with $S = 1$ and $T = (6,0)$ while the large shaded area is of LOD 1 and is rendered with $S = 2$ and $T = (4,4)$	93
3.4	Down-sampling process for: (a) a height-field with n=2, (b) its triangulation, (c) errors texture. Greyscale levels show which vertices exist in the different LODs 0, 1, 2 respectively from top to bottom	96
3.5	(a) The errors texture of a height-map with $N=5$ and	
3.6	(b) the built quad-tree from it	
3.7	Cracking visual artifact (wireframe)	105
3.8	The visual distortion due to cracks	106
3.9	Two adjacent k=9 terrain blocks with LOD difference of 1 $$	107
3.10	Two adjacent k=9 terrain blocks with LOD difference of 2 $$	108
3.11	Two adjacent k=9 terrain blocks with LOD difference of 3	109

3.12	Detailed structure of the rendering fragment shader imple-	
	menting the proposed augmented fuzzy terrain texturing method	114
3.13	(a) a fuzzy function and (b) a plot of three detail textures fuzzy membership functions	115
4.1	A plot of the frame rate against the experiment time with $K_b = 513$ and $\delta = 1$, $\delta = 2$, $\delta = 3$ for the Puget Sound dataset without frustum culling	123
4.2	A plot of the triangles count per frame against the experiment time with $K_b = 513$ and $\delta = 1$, $\delta = 2$, $\delta = 3$ for the Puget Sound dataset without frustum culling	124
4.3	A plot of the frame rate against the experiment time with $K_b = 513$ and $\delta = 1$, $\delta = 2$, $\delta = 3$ for the Puget Sound dataset with frustum culling	125
4.4	A plot of the triangles count per frame against the experiment time with $K_b = 513$ and $\delta = 1$, $\delta = 2$, $\delta = 3$ for the Puget Sound dataset with frustum culling	126
4.5	A plot of the frame rate against the experiment time with $K_b = 129$ and $\delta = 1$, $\delta = 2$, $\delta = 3$ for the Puget Sound dataset without frustum culling	127
4.6	A plot of the triangles count per frame against the experiment time with $K_b = 129$ and $\delta = 1$, $\delta = 2$, $\delta = 3$ for the Puget Sound dataset without frustum culling	128