Acknowledgments

FIRST OF ALL, THANKS TO ALLAH

In these few lines, I would like to express my deep gratitude, appreciation and sincere thanks to the main supervisors of this thesis, *Prof.Dr. Salah El Din Demerdash*, *Professor of Cardiology*, *Ain Shams University*, for his supervision, valuable remarks, until this work was fulfilled.

I would like to express my special deep gratitude, appreciation and sincere thanks to *Dr. Tamer Abu Arab*, *Lecturer of Cardiology, Ain Shams University*, for his continuous support, meticulous supervision, great valuable remarks, encouragement and assistance until this work was fulfilled.

Finally, I would like to express my special deep thanks and gratitude to my family especially my father, my mother, and my wife for their continuous support and encouragement and without them the completion of this work would have not been possible

Hossam El Din Mohamed

Abbreviations

ASE	American Society of Echocardiography
AVF	Ateriovenous fistula
AT	Acceleration time
CAD	Coronary artery disease
CKD	Chronic kidney disease
CMR	Cardiac magnetic resonance
CRT	Cardiac resynchronizing therapy
DBP	Diastolic blood pressure
Ecclx	LV eccentricity index
EF	Ejection fraction
ET	Ejection time
ESRD	End stage renal disease
FAC	Fractional area change
IVA	Isovolumic acceleration
IVC	Inferior vena cava
IVCT	Isovolumic contraction time
IVRT	Isovolumic relaxation time
HD	Hemodialysis
LVEDD	Left ventricular end-diastolic diameter
LVESD	Left ventricular end-systolic diameter
LVH	Left ventricular hypertrophy
LVMI	Left ventricular mass
K/DOQI	National Kidney Foundation Dialysis Outcome Quality Initiative
MBF	Myocardial blood flow
MI	Myocardial infarction
MPI	Myocardial performance index
MRI	Magnetic resonance imaging
LTDIS'	Lateral tricuspid(tissue Doppler image)systolic excursion velocity
LV	Left ventricle
PA	Pulmonary artery
PD	Peritoneal dialysis
PADP	Pulmonary artery diastolic pressure
PH PLAX	Pulmonary hypertension
PLAX PSAX	Parasternal long-axis Parasternal short-axis
PSAX PWT	Parasternal short-axis Posterior wall thickness
PVR	
RA	Pulmonary vascular resistance
KA	Right atrium

RVEDD Right ventricular end-diastolic diameter
 RVESD Right ventricular end-systolic diameter
 RV dp/dt Rate of pressure rise of right ventricle
 RV IVA Right ventricle isovulomic acceleration time

RIMP Right ventricular index of myocardial performance

RV Right ventricle

RV EF Right ventricle ejection fraction
RV FAC Right ventricle fractional area change

RVH Right ventricular hypertrophy
RVOT Right ventricular outflow tract
RVSP Right ventricular systolic pressure
RVS^O Right ventricle systolic excursion

SBP Systolic blood pressure SD Standard deviation

SPAP Systolic pulmonary artery pressure

STDIS' Septal tricuspid(tissue Doppler image)systolic excursion velocity

SWT Septal wall thickness
TAM Tricuspid annular motion

TAPSE Tricuspid annular plane systolic excursion

TDI Tissue Doppler Imaging

TDIS Tricuspid annular systolic excursion velocity

TR Tricuspid regurgitation

USRDS Unite State Renal Data System

2D Two-dimensional**3D** Three-dimensional

Table of contents

Title	Page
Abbreviation list	ii
Table of tables	V
Table of figures	vii
Introduction and aim of the work	1-4
Review of literature	5-57
Chapter I: Anatomy and physiology of right ventricle	5-16
Chapter II: Echocardiographic assessment of right ventricle	17-42
Chapter III: Right Ventricular Affection in Hemodialysis Patients	43-57
Subjects and methods	58-75
Results	76-95
Discussion	96-101
Summary	102-104
Limitations	105
Conclusion	106
Recommendations	107
References	108-143
Arabic summary	144

Table of tables

Table	Title	Page
Table 1	Estimation of RA pressure on the basis of IVC diameter and collapse	68
Table 2	Summary of reference limits for recommended measures of right heart structure and function	73
Table 3	Gender distribution among the study groups	77
Table 4	Age distribution among the study groups	78
Table 5	Distribution of risk factors among the study groups	79
Table 6	Dyspnia among the study groups	81
Table 7	Systolic Blood Pressure (SBP) among the study groups	82
Table 8	Diastolic Blood Pressure (DBP) among the study groups	82
Table 9	Heart Rate (HR) among the study groups	83
Table 10	Comparison between the study groups regarding EF, Aorta and LA	85
Table 11	Comparison between the study groups regarding SWMA	86
Table 12	Comparison between the study groups regarding Right side dimensions	87
Table 13	Comparison between the study groups regarding RV free wall thickness	89
Table 14	Comparison between the study groups regarding FAC	90
Table 15	Comparison between the study groups regarding TAPSE	91
Table 16	Comparison between the study groups regarding Doppler Tie index	92
Table 17	Comparison between the study groups regarding Tissue Doppler Tie index	93

Table	Title	Page
Table 18	Comparison between the study groups regarding S wave	94
Table 19	Prevalence of RV dysfunction in patients on regular hemodialysis	101

Table of figures

Figure	Title	Page
Figure 1	This window dissection shows the 3 components of a normal right ventricle	11
Figure 2	Illustration of shape changes in the heart during contraction	13
Figure 3	Comparison of pressure volume loops obtained in humans with micromanometer catheters and ventriculography	15
Figure 4	Measurement of end-diastolic right ventricular wall thickness	20
Figure 5	Apical 4-chamber image showing the right ventricular (RV) basal (RVD1) and mid cavity (RVD2) RV minor dimensions and the RV longitudinal dimension (RVD3)	22
Figure 6	Examples of right ventricular fractional area change (FAC)	23
Figure 7	Measurements of tricuspid annular plane systolic excursion (TAPSE) in a normal individual 224 mm (A) and in a patient with pulmonary hypertension 29 mm (B)	25
Figure 8	Calculation of right ventricular myocardial performance index (RVMPI) pulsed tissue Doppler	30
Figure 9	Normal Doppler tissue imaging (DTI) waveform obtained at lateral mitral annulus	37
Figure 10	Pulsed-wave tissue Doppler at the tricuspid level of the right ventricular free wall in a normal individual (A) and in a patient with pulmonary hypertension (B)	41
Figure 11	Cardiomyopathy and ischemic heart disease in chronic Uremia	47
Figure 12	Left ventricular (LV) pressure overload, LV volume overload, and myocyte death in chronic uremia	48
Figure 13	Apical 4-chamber image showing the right ventricular (RV) basal (1L) and mid cavity (2L) and the RV longitudinal dimension (3L)	63
Figure 14	Tracing of the right atrium to obtain RA major and RA minor dimensions	64
Figure 15	Measurement of right ventricle free wall	65

Figure	Title	Page
Figure 16	Right ventricular fractional area change (RVFAC).	66
Figure 17	Measurement of tricuspid annular plane systolic excursion (TAPSE)	67
Figure18	Measurement of SPAP	68
Figure 19	Tricuspid annular tissue Doppler imaging. Peak myocardial systolic velocity S wave (1), peak early diastolic velocity E wave (2), peak late diastolic velocity A wave (3)	69
Figure 20	Measurement of Ejection Time (ET)	71
Figure 21	Measurement of tricuspid (valve) closure-opening time	71
Figure 22	Measurement of ET* (ET Doppler), ICT (ISO C Doppler) and IRT (ISO R Doppler)	72
Figure 23	Distribution of gender among the study groups	77
Figure 24	Distribution of age among the study groups	78
Figure 25	Distribution of risk factors among the study groups	80
Figure 26	Dyspnia among the study groups	81
Figure 27	Distribution of SBP and DBP among the study groups	83
Figure 28	Distribution of HR among the study groups	84
Figure 29	RV dimensions among the study groups	88
Figure 30	Free RV wall thickness among the study groups	89
Figure 31	FAC among the study groups	90
Figure 32	TAPSE among the study groups	91
Figure 33	Doppler Tie index among the study groups	93
Figure 34	Tissue Doppler Tie index among the study group	94
Figure 35	S wave Tie index among the study groups	95

Value of tissue Doppler imaging (TDI) in assessment of right ventricular function in patient with chronic renal failure on regular dialysis

Thesis

Submitted in Partial Fulfillment for the Master Degree in Cardiology

By
Hossam El Din Mohamed El Sedawy
M.B.B.Ch.

Supervised by

Prof. Dr. Salah El Din Demerdash

Professor of Cardiology Ain Shams University

Dr. Tamer Abu Arab

Lecturer of Cardiology Ain Shams University

Faculty of Medicine Ain Shams University 2015

INTRODUCTION

Cardiovascular disease is the leading cause of mortality in patients undergoing dialysis, accounting for 50% of deaths [1]. In particular, heart failure is the most common finding in these patients and is associated with poor prognosis (*Trespalacios et al.*, 2003).

Hemodialysis (HD) which is usually carried out via a surgically created native arteriovenous fistula (AVF) has been associated with an increased risk of pulmonary hypertension (Yigla et al., 2003; Beigi et al., 2009; Yigla et al., 2008; Bozbas et al., 2009), a condition reported as a predictor of mortality in these patients (Yigla et al., 2009).

The incidence of pulmonary hypertension in HD patients ranges from 17 to 60% and is associated with the presence of AVF (*Yigla et al.*, 2003; *Beigi et al.*, 2009; *Yigla et al.*, 2008; *Bozbas et al.*, 2009). The leading mechanism underlying pulmonary hypertension development in these patients is the volume/pressure overload imposed by the shunt which increases right ventricular output and pulmonary pressures.

On the other hand, AVF determines a chronic increase in preload which may impair right ventricular performance independently of post-load conditions (*Piazza and Goldhaber*, 2005).

Although patients undergoing chronic dialysis exhibit an increased prevalence of pulmonary hypertension during treatment, data on the development of right ventricular dysfunction (RVD) are lacking. Moreover, in patients with pulmonary hypertension, survival has been related to cardiac function rather than pulmonary pressure values (*D'Alonzo et al.*, 1991).

Importantly, RVD may also affect left ventricular filling via interventricular interaction (*Piazza and Goldhaber*, 2005).

In recent years, the assessment of right ventricular function by tissue Doppler imaging (TDI) has been established as a common approach to detect preclinical abnormalities of cardiac function and has also been proposed as a reliable predictor of prognosis (*Dandel et al.*, 2007).

Previous works regarding the relation between pulmonary hypertension and dialysis have mostly investigated the impact of volume overload on TDI indices of left ventricular function, showing an increased prevalence of diastolic dysfunction in these patients (*Gulel et al.*, 2008; *Hayashi et al.*, 2006).

However, data on the prevalence of RVD in patients undergoing chronic dialysis are still lacking. This study is designed to investigate the impact of chronic dialysis therapy on right ventricular function.

Echocardiography is a widely available imaging technique particularly suitable for follow-up studies, because of its non-Invasive nature. low cost, and lack of ionizing radiation or radioactive agent and it is the first available imaging modality for screening for pulmonary hypertension but assessment of RV function is challenging due to the pet complex geometry of the right ventricle (RV).

The development of technology for measurement of regional myocardial velocities by means of tissue Doppler and software have offered researchers a promising new technology for noninvasive assessment of RV myocardial function (*Sutherland et al., 1999*). Shortly thereafter studies reported on the applicability of tissue Doppler based deformation analysis in the RV as well (*Kowalski et al., 2001; Jamal et al., 2003*). These new parameters seemed clinically useful and potentially less load dependent than other echocardiographic markers of RV myocardial performance.

AIM OF WORK

To detect early change in right ventricular functions by tissue Doppler imaging (TDI) in patients with chronic renal failure on regular hemodialysis.

Chapter I

ANATOMY AND PHYSIOLOGY OF RIGHT VENTRICLE

Historical background

For over a thousand years, the world's view of the pulmonary circulation hewed to the teachings of Galen, who believed that blood was produced in the liver, then delivered by the right ventricle (RV) to the tissues and organs where it was consumed. In Galen's view, blood "seeped" into the left ventricle (LV) directly from the RV via invisible pores in the interventricular septum. While it may now seem self evident that this is impossible, Galen viewed blood movement as a low volume ebb and flow (*Clifford*, *2010*).

In the 13th century, Ibn al-Nafis of Syria rejected Galen's description and speculated that blood from the RV reached the LV via the lungs. While he deserves credit for the first accurate description of the pulmonary circulation, his works were lost and largely forgotten until quite recently, and it does not seem likely that they influenced the understanding of circulatory physiology in the western world (*West et al.*, 2008).

The first detailed description of the RV and pulmonary circulation to receive significant attention in the western world appeared near the beginning of the 16th century in the midst of