Role of Mechanical Ventilation in Management of Heart Failure

An Essay

Submitted for Partial Fulfillment of Master Degree in Critical Care Medicine

$\mathbf{B}\mathbf{y}$

Yasser Mohammed Mahmoud

M.B.B.Ch., Faculty of Medicine, Cairo University

Supervisors

Prof. Dr. Bahira Mohamed Tawfik Helmy

Professor of Anesthesiology, Critical Care and Pain Management Faculty of Medicine- Ain Shams University

Prof. Dr. Hadil Magdy Abd El-Hamid

Assistant Professor of Anesthesiology, Critical Care and Pain Management Faculty of Medicine- Ain Shams University

Dr. Rafik Emad Latif

Lecturer of Anesthesiology, Critical Care and Pain Management Faculty of Medicine- Ain Shams University

Ain Shams University Faculty of Medicine 2015

First and above all, my deepest gratitude and thanks to **ALLAH** for achieving any work in my life.

I find no words by which I can express my extreme thankfulness, deep appreciation and profound gratitude to my eminent **Prof. Dr. Bahira Mohamed Tawfik Helmy,** Professor of Anesthesiology for her generous help, guidance, kind encouragement and great fruitful advice during supervision of this work.

I am deeply grateful to Prof. Dr. Hadil Magdy Abd El-Hamid, Assistant Professor of Anesthesiology, Faculty of Medicine Ain Shams University, who devoted her time, effort and experience to facilitate the production of this work.

And special thanks to **Dr. Rafik Emad Latif,** Lecturer of Anesthesiology, Faculty of Medicine Ain Shams University, for his great help and support throughout this work.

Finally I would like to express my deepest thankfulness to my unique Parents and my helpful wife for their great help and support that without them I can do nothing.

Yasser Mohammed Mahmoud

Contents

List of Abbreviations I
List of Figures
List of TablesVI
Introduction1
Aim of the Work3
Review of Literature
- Chapter (1): Overview of Heart Failure4
- Chapter (2): Cardiopulmonary Effects of Positive
Pressure Ventilation
- Chapter (3): Invasive Mechanical Ventilation in Heart
Failure 63
- Chapter (4): Non-invasive Ventilation in Heart Failure .97
Summary
References 138
Arabic Summary

List of Abbreviations

Abb.	Mean
ACC	American college of cardiology
ACPE	Acute cardiogenic pulmonary edema
ADHERE	Acute decompensated heart failure national
	registry
ADHF	Acute decompensated heart failure
AHA	American heart association
AHF	Acute heart failure
Ang	Angiotensin
ANP	Atrial natriuretic peptide
APA	Aminopeptidase A
APN	Aminopeptidase N
APRV	Airway pressure release ventilation
ARDS	Acute respiratory distress syndrome
ASV	Adaptive servo ventilation
BiPap	Bilevel positive airway pressure
BNP	Brain natriuretic peptide
CAD	Coronary artery disease
CaO ₂	Total arterial oxygen content
CCP	Critical closing pressure
CHF	Congestive heart failure
CMR	Cardiac magnetic resonance
CMV	Controlled mandatory ventilation
CO	Cardiac output
COP	Critical opening pressure
COPD	Chronic obstructive pulmonary disease
CPAP	Continuous positive airway pressure
CRT	Cardiac resynchronization therapy
CSR	Chyne stokes respiration- central sleep apnea
DCM	Dilated cardiomyopathy
DHF	Diastolic heart failure
ED	Emergency department
EHFS	Euro-Heart failure survey

Abb.	Mean
EPAP	Expiratory positive airway pressure
FiO ₂	Inspired fraction of oxygen
FRC	Functional residual capacity
HF	Heart failure
HF-PEF	Heart failure with preserved ejection fraction
HF-REF	Heart failure with reduced ejection fraction
HOCM	Hypertrophic obstructive cardiomyopathy
HPV	Hypoxic pulmonary vasoconstriction
I/E ratio	Inspiratory/ Expiratory ratio
ICU	Intensive care unit
IPAP	Inspiratory positive airway pressure
IPPV	Intermittent positive pressure ventilation
IRAP	Insulin-regulated aminopeptidase
ITP	Intra-thoracic pressure.
LA	Left atrium
LH	Left side of the heart
LV	Left ventricle
LVEF	Left ventricular ejection fraction
LVESP	Left ventricle end systolic pressure
LVESV	Left ventricle end systolic volume
LVSVV	Left ventricle stroke volume variations
MI	Myocardial infarction
MR	Mitral regurge
MV	Mechanical ventilation
NAVA	Neutrally adjusted ventilator assist
NEP	Neutral endopeptidase
NHLBI	National Heart, Lung, and Blood Institute
NIPPV	Non-invasive positive pressure ventilation
NIV	Non-invasive ventilation
OSA	Obstructive sleep apnea
PA	Pulmonary artery
PaO ₂	Arterial partial pressure of oxygen
PAP	Positive airway pressure
PAV	Proportional assist ventilation
Paw	Airway pressure

Abb.	Mean
PCV	Pressure controlled ventilation
PEEP	Positive end expiratory pressure
PH	Pulmonary hypertension
PpL	Pleural pressure
PPV	Positive pressure ventilation
PRVC	Pressure regulated volume control
PS	Pressure support
PSV	Pressure support ventilation
PVD	Patient ventilator dys-synchrony
PVR	Pulmonary vascular resistance
RA	Right atrium
RAS	Renin angiotensin system
RAWP	Right atrial wedge pressure
RH	Right side of the heart
RV	Right ventricle
RVESP	Right ventricle end systolic pressure
RVESV	Right ventricle end systolic volume
SAC	Systemic arterial compliance
SaO ₂	Arterial oxygen saturation
SBT	Spontaneous breathing trial
ScvO ₂	Central venous oxygen saturation
SHF	systolic heart failure
SV	Stroke volume
SvO ₂	Mixed venous oxygen saturation
SVR	Systemic vascular resistance
TFM	Total face mask
VR	Venous return
Vt	Tidal volume
WHO	World health organization
WOB	Work of breathing

List of Figures

Figure	Title	Page
1	Changes between systolic and diastolic dysfunction by echocardiogram and postmortem specimen	7
2	Activation of RAS	17
3	A scheme of effect of sympathetic hyperstimulation on cardiac dysfunction	19
4	Relation of stroke volume or cardiac output and left ventricular end-diastolic pressure (LVEDP) or wedge pressure	21
5	Pressure-volume relationship in normal subjects and those with heart failure due to systolic or diastolic dysfunction	22
6	Pressure-volume loops in different architectural phenotypes of left ventricular hypertrophy	23
7	Architectural patterns of cardiac hypertrophy	25
8	Effects of respiration on venous diameter	32
9	Diagram shows effects of PEEP	48
10	Changes in right cardiac chambers and CVP during positive pressure breathing	54
11	Changes in pulmonary vessels and left cardiac chambers during positive pressure breathing	56
12	Factors that affects interventricular septum	59
13	A schematic representation of the pathophysiology of acute heart failure syndrome	69
14	Physiology of normal alveolus	79

Figure	Title	Page
15	Differences between cardiogenic and non- cardiogenic pulmonary edema	80
16	The hemodynamic effects of positive pressure ventilation	82
17	A diagram demonstrates steps of spontaneous breathing trial	92
18	Pathological states that result in an imbalance between respiratory- muscle capacity and respiratory load	93
19	Mouthpiece	100
20	Nasal mask	101
21	Nasal pillows	101
22	Total face mask & nasal-oral mask	102
23	Helmet	103
24	Acute pulmonary edema autoaggravation between respiratory and heart failure	108
25	Effects of chronic adaptive servo-ventilation therapy on left chamber volumes and mitral regurgitation	120

List of Tables

Table	Title	Page
1	Pulmonary complications of pulmonary venous hypertension and resulting manifestations	27
2	Comparison between pulsus paradoxus and reversed pulsus paradoxus	35
3	Classification and common clinical characteristics of patients of AHF	67
4	Cardiovascular effects of mechanical ventilation according to type of myocardial dysfunction	84
5	Different modes of mechanical ventilation used nowadays	86
6	Summarizes advantages and disadvantages of different interfaces	104

Introduction

Introduction

eart failure is a common condition, affecting up to 3 per cent of the population aged 45 and older, and is associated with high mortality and poor quality of life. Major diagnostic and therapeutic advances have been made over the past three decades, but international and national audits suggest that many patients are incompletely investigated and treated (*Davis*, 2012).

Pulmonary edema secondary to acute left ventricular failure is a medical emergency in which effective measures to stabilize cardiorespiratory function are critically important to assure the best possible outcome. Pulmonary edema increases the work of breathing and affects arterial hypoxemia which may rapidly alter cardiac performance in unfavorable direction by way of cardiopulmonary interactions. detrimental When such development is in progress, pharmacological support circulatory function may not be sufficient to prevent further deterioration of the patient's condition. Therefore specific therapy for respiratory failure must be instituted without delay (Mebazaa, et al., 2008).

Introduction

In chronic heart failure, bronchial pneumonia is still a common cause of death, and any infectious process occurring in the setting of decompensated heart failure may well be an indication for hospitalization and more aggressive therapy. (topol, et al., 2002). Evidence is accumulating of an important association between sleep-disordered breathing and CHF. Either obstructive sleep apnea (OSA) or, more commonly, Chyne-Stokes respiration with central sleep apnea (CSR-CSA) has been detected in as many as 50% of patients with chronic CHF (Gehlbach and Geppert, 2004).

Patients who do not have a response to initial therapy often require tracheal intubation and ventilation, with the associated potential for complications (*Gray et al.*, 2008).

In recent decades, non-invasive ventilation (NIV) with positive pressure has been widely used to treat both hypoxemic acute respiratory failure (ARF) and hypoxemia-hypercapnia frequently seen in patients with acute heart failure. NIV does not require oro-tracheal intubation and has proved being useful in the treatment of various forms of ARF. Patients with ARF due to acute lung edema generally benefit from the use of NIV (CPAP and BiPap). Early use reduces the number of intubations and complications, enhances clinical and blood gas parameters, and hospital survival rates (*Carratala and Masip, 2010*).

Aim of the Work

Aim of the Work

he aim of this study is to highlight the importance and outcome of mechanical ventilation, whether invasive or non-invasive, in management of heart failure.

Chapter (1)

Overview of Heart Failure

