

CFD INVESTIGATION OF SMOKE MANAGEMENT IN UNDERGROUND TUNNEL

By

Eng. Waleed Mahmoud Mostafa El-Sayed Sweida

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

CFD INVESTIGATION OF SMOKE MANAGEMENT IN UNDERGROUND TUNNELS

 $\mathbf{B}\mathbf{y}$

Eng. Waleed Mahmoud Mostafa El-Sayed Sweida

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil
Professor, Mechanical Power Engineering Department
Faculty of Engineering, Cairo University

Dr. Esmail Mohamed Ali El-Bialy

Dr. Omar Ahmed Soliman Huzayyin

Lecturer, Mechanical Power Engineering Dep.,

Faculty of Engineering, Cairo University

Dr. Omar Ahmed Soliman Huzayyin

Lecturer, Mechanical Power Engineering Dep.,

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

CFD INVESTIGATION OF SMOKE MANAGEMENT IN UNDERGROUND TUNNELS

By

Eng. Waleed Mahmoud Mostafa El-Sayed Sweida

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee:

Prof. Dr. Essam E. Khalil Hassan Khalil (Thesis Main Advisors)

Professor, Mechanical Power Engineering Department,

Faculty of Engineering, Cairo University.

Prof. Dr. Tharwat Wazir Abo Arab (Internal Examiner)

Professor, Mechanical Power Engineering Department,

Faculty of Engineering, Cairo University.

Prof. Dr. Mahmoud Abd El Fatah El Kadi (External Examiner)

Professor, Mechanical Power Engineering Department,

Faculty of Engineering, Al-Azhar University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer:** Waleed Mahmoud Mostafa Elsayed

Date of Birth: 14 / 7 / 1984

Nationality: Egyptian

E-mail: elswedy_mech@hotmail.com

Phone.: 01006868963

Address: 2nd District, Building 196, 6th October, Giza, Egypt

Registration Date : 1 / 10 / 2012 **Awarding Date :** / / 2017

Degree: Doctor of Philosophy

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil

Dr. Esmail Mohamed Ali

Dr. Omar Ahmed Soliman Huzayyin

Examiners: Prof. Dr. Essam E. Khalil

Prof. Dr. Tharwat Wazir Abo Arab

Prof. Dr. Mahmoud Abd El Fatah El Kadi

(Professor, Mechanical Power Engineering Department,

Faculty of Engineering, Al-Azhar University)

Title of Thesis: CFD INVESTIGATION OF SMOKE MANAGEMENT IN UNDERGROUND TUNNELS

Key Words: (Ventilation - Smoke Management - Tunnel Fire - Scaling methods – Jet Fan)

Summary:

Mechanical ventilation systems play a major role in tunnels safety. All over the world, different systems are used for tunnel ventilation in normal operation and fire conditions based on the tunnel geometry, design and other parameters. The main goal of those systems is a proper smoke evacuation in case of fire.

The aim of this works to study and understand the fires in tunnel systems both experimentally and numerically to attain better understanding of the fire dynamics to help preserve lives in case of fire.

This was achieved by conducting experimental work on small-scale tunnel studying the temperature and velocity distribution inside the tunnel. Also, using scaling methods to calculate the fire size for the experiment and predicting the fire size and data for large scale tunnel simulation using Fire Dynamic Simulator (FDS).

The experimental results and FDS numerical simulations where compered and showed a reasonable agreement between the model and the experiment. This validated the model and gave a detailed look on the temperature and velocity distribution in the full-scale tunnel.

The theoretical verification of FDS computer model is achieved by the comparison of results with literature, this was performed to enhance the confidence in using FDS to estimate both the initial growth and peak heat release rate (HRR) of different tunnel fires. In addition, a HRR semi empirical relation is obtained and implemented in the current theoretical model solution.

ACKNOWLEDGEMENT

First, I would like to prostrate and praise to THE ALMIGHTY ALLAH whose blessing, guide and mercy have been behind whatever successfulness may have been achieved in this work. I am eternally grateful that His blessings have come in the form of family and friends who have supported me in all my endeavours.

Also, I would like to express my deep gratitude and thanks to Prof. Dr. **Essam E. Khalil** for his support, continuous encouragement and distinctive supervision throughout the course of this work. He helped providing me with up to date technical references that were of great help in the present work

Also, I cannot express; in words; my thanks and gratitude to my family for their great and continuous help and support they provided me to finish this work in a suitable form.

Finally, I cannot forget the support of my colleagues in the Mechanical Power Engineering department as well as from my Professors for their encouragement and concern throughout the scope of the work.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	vii
NOMENCLATURE	xviii
GREEK LETTERS	xx
SUPERSCRIPTS AND SUBSCRIPTS	xxi
ABBREVIATIONS	xxii
ABSTRACT	xxiii
Chapter 1: INTRODUCTION	1
1.1 Background	1
1.2 Tunnel Ventilation Objectives	1
1.2.1 Preventing of smoke back-layer in tunnels	2
1.2.2 A stream of non-contaminated air is provided to motorists in a p from a fire	
1.3 Ventilation Systems in Tunnels	2
1.3.1 Longitudinal ventilation systems	3
1.3.2 Transverse ventilation systems	4
1.4 Jet Fans Ventilation	5
1.4.1 Types of jet fans	6
1.5 Scope of Research	7
Chapter 2: Literature Review	8
2.1 Introduction	8
2.2 Scaled and Full Scaled Fire Tests	8
2.3 Parametrical Empirical Studies	10

2.4 Theoretical Models	10
Chapter 3: PHYSICAL MODELING OF FIRE AND SMOKE EVOLUTION IN T	UNNELS
IN CONFINED AND INCONFINED ENCLOSURE	18
3.1 Governing Equations	18
3.1.1 Mass and species transport	18
3.1.2 Momentum transport	18
3.1.3 Energy transport	19
3.1.4 Equation of state	20
3.2 Structure of CFD Code	20
3.2.1 Hydrodynamic model	21
3.2.2 Combustion model	21
3.2.3 Heat radiation models	21
3.2.4 Visibility	25
3.2.5 Evacuation of agents	25
3.2.6 Human movement model	25
3.2.7 Fire and human interaction	27
3.2.8 Large eddy simulation (LES)	28
3.2.9 Combustion (Mixture Fraction Model)	29
3.3 Geometry	30
3.4 Boundary conditions	30
3.5 Sprinklers and detectors	30
3.6 Grid sensitivity analysis	31
Chapter 4: Experimental Verification of FDS Model on Small and Large Scale Tur	nnels32
4.1 Introduction	32
4.2 Description of Present Test Rig	32
4.3 Test Matrix	33

4.4 Developed Calculation Method for HRR	35
4.4.1 First test series-wood frames (linear representation of heat release rate c for upholstered furniture)	
4.4.2 Second test series-metal frames (linear representation of heat release rate data for upholstered furniture)	
4.4.3 Third test series- plastic frames (linear representation of heat release rate data for upholstered furniture)	,
4.4.4 Conclusion	40
4.5 Optimization of Air flow rate for fan selection	40
4.6 Scaling Method	40
4.7 Small and Large Scale Tunnels Cases	41
4.7.1 Small scale tunnel case	41
4.7.2 Large scale tunnel case	42
4.8 Discussion of Small and Large Scale Tunnel Results	43
4.8.1 Small scale tunnel results	43
4.8.2 Large Scale Tunnel Results	48
4.8.3 Comparison and verification of obtained results	52
4.9 Conclusion of the Obtained Results	56
Chapter 5: RESULTS AND CASE STUDIES	57
5.1 Introduction	57
5.2 Blanchard et al [21] Results	57
5.2.1 Introduction	57
5.2.2 Validation of numerical simulated results	57
5.2.3 Results of Tunnel Simulation	59
5.2.4 Validation results	60
5.3 Suez Canal Tunnel Case Study	71
5.3.1 Introduction	71

5.3.2 Tunnel model configuration	71
5.3.3 Mesh size and boundary conditions.	72
5.3.4 Grid sensitivity analysis	72
5.3.5 Results	73
Chapter 6: Conclusions and Suggested Future Work	112
6.1 Introduction	112
6.2 Conclusions	112
6.3 Recommendations for Future Work	113
REFERENCES	114
APPENDIX A: EXPERIMENT DESCRIPTION AND DEVICES UNCERTAINTY	
CALCULATIONS	118
I. Experiment Description	118
II. Uncertainty of Measuring Devices	119
APPENDIX B: SUMMARY OF FIRE IN ROAD TUNNELS [72-73]	121
APPENDIX C: CALCULATIONS OF JET FANS	126

LIST OF TABLES

Table 4-1: Temperature Test Matrix	33
Table 4-2: Velocity Test Matrix	
Table 4-3: CO Test Matrix	34
Table 4-4: First Test Results [71]	36
Table 4-5: Second Test Results [71]	37
Table 4-6: Third Test Results [71]	39
Table 4-7: Scaling Method by Ingason [23]	41
Table 4-8: Small-Scale Tunnel Parameters Values	41
Table 4-9: Large-Scale Tunnel Parameters Values	42
Table 5-1: Critical velocity estimation according to various methods	58
Table 5-2: size and velocity and HRR of flames in central extent and genuine extent passageway	
Table 5-3: Case studies	71

LIST OF FIGURES

Figure 1.1 : Stratified ceiling layer of combustion products against the ventilation current from left, with the fire source at the floor [8]2
Figure 1.2 : Longitudinal ventilation system with central fan saccardo nozzle [11]3
Figure 1.3 : Longitudinal ventilation system with saccardo nozzle and shaft [11]3
Figure 1.4 : Longitudinal ventilation system with jet fans [11]4
Figure 1.5 : Full Transverse ventilation system [11]4
Figure 1.6 : Semi transverse supply ventilation system [11]5
Figure 1.7 : Semi transverse exhaust ventilation system [11]5
Figure 1.8 : Jet fans mounting [12]5
Figure 1.9 : Axial Jet Fans [12]6
Figure 1.10 : Radial Jet Fans [12]6
Figure 3.1: Temperature variation with time at height 5.4m and 9m upstream fire location using different grid size [21]
Figure 4.1: Cross-sectional view of the tunnel [70]32
Figure 4.2: Measuring Locations
Figure 4.3: Specimen dimensions [71]35
Figure 4.4: HRR variation with time (test 1)36
Figure 4.5: HRR variation with time (test 2)38
Figure 4.6: HRR variation with time (test 3)39
Figure 4.7: Measuring Locations42
Figure 4.8: Temperature variation with time at 0.4 m upstream the fire source at height 0.8 m
Figure 4.9: Temperature variation with time at 1 m upstream the fire source at height 0.8 m
Figure 4.10: Temperature variation with time at 2 m downstream the fire source at height 0.8 m

Figure 4.11: Temperature variation with time at 2.6 m downstream the fire source at height 0.8 m45
Figure 4.12: V/Vmax variation with time at 0.4 m upstream the fire source at height 0.8 m
Figure 4.13: V/Vmax variation with time at 1 m upstream the fire source at height 0.8 m
Figure 4.14: V/Vmax variation with time at 2 m downstream the fire source at height 0.8 m
Figure 4.15: V/Vmax variation with time at 2.6 m downstream the fire source at height 0.8 m
Figure 4.16: Temperature variation with time at 4 m upstream the fire source at height 8 m48
Figure 4.17: Temperature variation with time at 10 m upstream the fire source at height 8 m
Figure 4.18: Temperature variation with time at 20 m downstream the fire source at height 8 m
Figure 4.19: Temperature variation with time at 26 m downstream the fire source at height 8 m
Figure 4.20: V/Vmax variation with time at 4 m upstream the fire source at height 8 m.
Figure 4.21: V/Vmax variation with time at 10 m upstream the fire source at height 8 m.
Figure 4.22: V/Vmax variation with time at 20 m downstream the fire source at height 8 m
Figure 4.23: V/Vmax variation with time at 26 m downstream the fire source at height 8 m
Figure 4.24: T/Tmax variation with t/tmax at 0.13L upstream the fire source at height 0.8H
Figure 4.25: T/Tmax variation with t/tmax at 0.33L upstream the fire source at height 0.8H53
Figure 4.26: T/Tmax variation with t/tmax at 0.66L upstream the fire source at height 0.8H

Figure 4.27: T/Tmax variation with t/tmax at 0.86L upstream the fire source at height 0.8 m
Figure 4.28: V/Vmax variation with t/tmax at 0.13L upstream the fire source at height 0.8H
Figure 4.29: V/Vmax variation with t/tmax at 0.33L upstream the fire source at height 0.8H
Figure 4.30: V/Vmax variation with t/tmax at 0.66L downstream the fire source at height 0.8H
Figure 4.31: V/Vmax variation with t/tmax at 0.86L downstream the fire source at height 0.8H
Figure 5.1 : Cross-sectional view of the tunnel [21]58
Figure 5.2: Longitudinal section of the tunnel with main sensor location [21]58
Figure 5.3: Thermocouple location in a given section upstream59
Figure 5.4: FDS modelling with grid size of 30 cm \times 30 cm \times 30 cm[21]60
Figure 5.5: Smoke View of FDS simulation at different time61
Figure 5.6: Smoke View of FDS Simulation at different time61
Figure 5.7: HRR of fire presented by Blanchard et al [21] and FDS simulation62
Figure 5.8: Temperature variation with time at 27 m upstream the fire at height 4.5 m [21]
Figure 5.9: Temperature variation with time at 27 m upstream the fire at height 5.4 m [21]63
Figure 5.10: Temperature variation with time at 9m upstream the fire at height 4.5 m[21]63
Figure 5.11: Temperature variation with time at 9 m upstream the fire at height 5.4 m [21]
Figure 5.12: Temperature variation with time at 24 m downstream the fire at height 5.4 m [21]64
Figure 5.13: Temperature variation with time at 24m downstream the fire at height 4.5 m [21]65
Figure 5.14: Longitudinal Temperature at height 4.5 m after 350 s [21]65
Figure 5.15: Longitudinal Temperature profile at height 4.5m after 120 s [21]66 $\rm i_{\rm X}$

Figure 5.16: Velocity variation with time [21]66
Figure 5.17: Velocity variation with time [21]67
Figure 5.18: Smoke View at different times67
Figure 5.19: Smoke View at different times
Figure 5.20: HRR variation with time [21]68
Figure 5.21: Temperature variation with time at 72m downstream fire location and height 5.4m [21]69
Figure 5.22: Temperature variation with time at 72m downstream fire location and height 3m [21]69
Figure 5.23: Velocity variation with time at height 5.4m and 15 m upstream fire location [21]
Figure 5.24: Velocity variation with time at height 5.4m and 54 m upstream fire location [21]
Figure 5.25 : Tunnel cross-section71
Figure 5.26: Model of Tunnel
Figure 5.27: Case #1 Temperature contour at x=50 m upstream fire at time 100 s73
Figure 5.28: Case #1 Temperature contour at x=50 m upstream fire at time 150 s73
Figure 5.29: Case #1 Temperature contour at x=50 m upstream fire at time 300 s74
Figure 5.30: Case #1Temperature contour at $x=50$ m downstream fire at time 100 s 74
Figure 5.31: Case #1Temperature contour at $x=50$ m downstream fire at time 150 s75
Figure 5.32: Case #1 Temperature contour at x=50 m downstream fire at time 300 s75
Figure 5.33: Case #1Temperature contour at $x=150$ m downstream fire at time $100 \text{ s.}.76$
Figure 5.34: Case #1Temperature contour at $x=150$ m downstream fire at time 150 s76
Figure 5.35: Case #1Temperature contour at $x=150$ m downstream fire at time 300 s76
Figure 5.36: Case #1Temperature contour in zone #1 at human level at time 100 s77
Figure 5.37: Case #1Temperature contour in zone #1 at human level at time 150 s77
Figure 5.38: Case #1Temperature contour in zone #1 at human level at time 300 s77
Figure 5.39: Case #1Temperature contour in zone #1 at mid plane at time 100 s77

Figure 5.40: Case #1Temperature contour in zone #1 at mid plane at time 150 s7
Figure 5.41: Case #1Temperature contour in zone #1 at mid plane at time 300 s7
Figure 5.42: Case #1Temperature contour in zone #2 at human level at time 100 s78
Figure 5.43: Case #1Temperature contour in zone #2 at human level at time 150 s78
Figure 5.44: Case #1Temperature contour in zone #2 at human level at time 300 s78
Figure 5.45: Case #1Temperature contour in zone #2 at mid plane at time 100 s78
Figure 5.46: Case #1Temperature contour in zone #2 at mid plane at time 150 s78
Figure 5.47: Case #1Temperature contour in zone #2 at mid plane at time 300 s78
Figure 5.48: Case #1 Temperature contour in zone #3 at human level at time 100 s78
Figure 5.49: Case #1 Temperature contour in zone #3 at human level at time 150 s 78
Figure 5.50: Case #1 Temperature contour in zone #3 at human level at time 300 s 78
Figure 5.51: Case #1Temperature contour in zone #3 at mid plane at time 100 s79
Figure 5.52: Case #1Temperature contour in zone #3 at mid plane at time 150 s79
Figure 5.53: Case #1Temperature contour in zone #3 at mid plane at time 300 s79
Figure 5.54: Longitudinal temperature distribution at human level in upstream region.
Figure 5.55: Longitudinal temperature distribution at human level in downstream region
Figure 5.56: Velocity Contours at mid plane in zone #1 at time 100 s80
Figure 5.57: Velocity Contours at mid plane in zone #1 at time 150 s80
Figure 5.58: Velocity Contours at mid plane in zone #1 at time 300 s80
Figure 5.59: Velocity Contours at mid plane in zone #2 at time 100 s8
Figure 5.60: Velocity Contours at mid plane in zone #2 at time 150 s81
Figure 5.61: Velocity Contours at mid plane in zone #2 at time 300 s8
Figure 5.62: Velocity Contours at mid plane in zone #3 at time 100 s83
Figure 5.63: Velocity Contours at mid plane in zone #3 at time 150 s81
Figure 5.64: Velocity Contours at mid plane in zone #3 at time 300 s