

Cairo University
Faculty of Veterinary Medicine
Department of Biochemistry and Chemistry of Nutrition

Biochemical studies on some natural hypolipidemic agents in rats

Thesis presented by

Rama Hussein Hasan Ali Nabhan 2007 B.Sc

Medical applied sciences, 6 October University

For the Degree of Master

Biochemistry and Chemistry of Nutrition

Faculty of Veterinary Medicine - Cairo University

Under supervision of

Prof. Dr.

El-Said Thabet Awad

Professor of Biochemistry and Chemistry of Nutrition
Faculty of Veterinary Medicine
Cairo University

Dr.Mohsen Ahmed Wasfy

Assistant Professor of Biochemistry and hemistry of Nutrition Faculty of Veterinary Medicine Cairo University

2017

.

Cairo University

Faculty of Veterinary Medicine

Department of Biochemistry and Chemistry of Nutrition

Supervision sheet

Prof. Dr. El-Said Thabet Awad

Professor of Biochemistry and Chemistry of Nutrition

Faculty of Veterinary Medicine

Cairo University

Dr. Mohsen Ahmed Wasfy

Assistant Professor of Biochemistry and Chemistry of Nutrition

Facultyof Veterinary Medicine

Cairo University

Cairo University
Faculty of Veterinary Medicine
Dept. of Biochemistry and Chemistry of Nutrition

Approval Sheet

The examining committee approved that Ms/ Rama Hussein Hasan Ali Nabhan for Master degree in Biochemistry and Chemistry of Nutrition.

Examining Committee:

Prof. Dr./ Omayma Ahmed Ragab

Prof. of Biochemistry -Faculty of Veterinary Medicine Banha University.

Prof. Dr./ Mohamad Ali Warda

Prof. of Biochemistry and Chemistry of Nutrition Faculty of Veterinary Medicine Cairo University.

Prf. Dr./ El-Said Thabet Awad

Prof. of Biochemistry and Chemistry of Nutrition Faculty of Veterinary Medicine Cairo University (Supervisor)

Name: Rama Hussein Hasan Ali Nabhan Nationality: Syrian

Date of birth: 6/10/1985 Place of birth:

Aleppo -Syria

Department : Biochemistry and Chemistry of Nutrition

Thesis Title: "Biochemical studies on some natural hypolipidemic agents in rats"

Supervisors: Prof. Dr. El-Said Thabet Awad

Dr. Mohsen Ahmed Wasfy

Abstract

Fats are important constituent of any diet and play an important role in both health and disease. Excessive consumption of fats in diet, especially those derived from animals sources, elevates of blood triacylgycerol and cholesterol, which is then responsible for fatty liver, atherosclerosis and other related disorders. The present work has been planned to investigate the role of *Morus alba* extract and *Cinnamon zeylanicum* bark extract against non-alcoholic fatty liver disease induced by mutton fat. The experimental design was divided into two phases (induction phase and treatment phase). The first phase (induction Period) induction of non-alcoholic fatty liver disease in rats by feeding mutton fat. In this phase rats resulting a significant elevation of body weight, Total cholesterol, TAG, HDL and LDL with marked changes in the levels of ALT, AST aminotransferases activities. The second phase (treatment period) the groups of rats maintained on high-fat diet with administration of *Morus alba* extract (1000 mg/kg b.wt) and *Cinnamon* bark extract (200 mg/kg b.wt).

The obtained result revealed that, lipid peroxidation is resulting from lipid accumulation and oxidative stress, in the current study HFD group showed a disturbance in lipid peroxidation (MAD) and antioxidant potentials (GSH, GSH-PX and SOD). The result showed significant improvement in *Morus alba* group and *Cinnamon* group of the examined biochemical parameters especially by *Morus alba* leaf extract.

<u>Key Words</u>: *Morus alba*, *Cinnamon zeylanicum*, mutton fat, non-alcoholic fatty liver.

Acknowledgement

First of all prayerful thanks are to our **Merciful Allah** who gives us everything we have and gave the power and patience to finish this work.

My profound gratitude and appreciation are devoted to **Prof. Dr. El-Said Thabet Awad**, Professor of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary, Cairo University for his supervision, continous help and valuable criticism throughout the work.

Also, I would like to thank the soul of **Dr. Mohsen Ahmed Wasfy** Assistant, Professor of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary, for his kind and academic advice, encouragement and help.

I would like to express my deep thanks to Dr Abdelbary.M.Prince lecture of Biochemistry and Chemistry of Nutrition of Vet medicine. Cairo University for his supported in this study.

List of Contents

No.	Subject	Page No.
1	Introduction	1
2	Review of Literature	5
2.1	Biochemical function of the Liver.	5
2.2	Fatty liver	6
2.2.1	Non alcoholic fatty liver disease (NAFLD)	8
2.2.1.2	Causes of non-alcoholic fatty liver dieases	9
2.2.1.2.1	Nutritional factors	9
2.2.1.2.2.2	High fat diet	9
2.2.1.2.2.3	High carbohydrate diet	13
2.2.1.2.2.4	Choline-methionine deficient diet	13
2.2.1.2.2.3	Hyperlipidemia	13
2.3.	Morus Alba	14
2.3.1.	History of plant	14
2.3.2.	Active principles of Morus Alba	15

No.	Subject	Page No.
2.3.3.	Pharmacological actions of Morus alba	16
2.3.3.1	Hepatoprotective effect	16
2.3.3.2	Antioxidant effect	17
2.3.3.3	Anti-diabetic effect	18
2.3.3.4	Antimicrobial effect	19
2.3.3.5	Anti-tumor effect	19
2.3.3.6	Other pharmacological actions	20
2.4.	Cinnamon	21
2.4.1	2.4.1. History of plant	21
2.4.2	Active principles of cinnamon	22
2.4.3	Pharmacological effect of Cinnamon	23
2.4.3.1	Antioxidant effect	23
2.4.3.2	Anti-ulcer effect	24
2.4.3.3	Anti-microbial effect	24
2.4.3.4	Anti-diabetic effect	24

No.	Subject	Page No.
2.4.3.5	Anti-inflammatory effect	25
	Material and Method	27
3	Materials and Methods	27
3.1.	Materials	27
3.1.1.	Experimental animals	27
3.1.2.	The treating materials	27
3.1.2.1	Morus Alba leaf extract	27
3.1.2.2	Cinnamon extract	27
3.2	The experimental diet	28
3.2.1.	basal diet constituents	28
3.2.2.	High fat diet	29
3.2.3	The analysis of basal diet and high fat diet	30
3.3.	Method	30
3.3.1.	Experimental design	30
	I- The first phase (induction period)	30

No.	Subject	
	П- The second phase (treatment period)	31
3.3.2.	Sample collection	31
3.3.2.1	Blood samples and biochemical analysis	31
3.3.2.2	Liver tissue homogenate and biochemical analysis	32
3.3.3.1.	Biochemical analysis	32
3.3.3.1.2.	Determination of plasma glucose level	32
3.3.3.1.2	Determination of serum total cholesterol level	33
3.3.3.1.3.	Determination of serum triacylglycerol level	33
3.3.3.1.4.	Determination of serum HDL-cholesterol level	34
3.3.3.1.5.	Determination of serum LDL-cholesterol level	34
	Determination of serum alanine aminotransferase activity (ALT)	35
3.3.3.1.7.	Determination of serum aspertate aminotransferase activity (AST)	35
3.3.3.1.8	Determination of serum creatinine level	35
3.3.3.9	Determination serum urea level	35
3.3.3.10.	Determination of serum uric acid level	36

No.	Subject	Page No.
3.3.3.2.	Liver homogenate biochemical analysis	36
3.3.3.2.1.	Determination of malondialdehyde (MDA)	36
3.3.3.2.2.	Determination of reduced glutathione (GSH)	37
3.3.3.2.3.	Determination of Glutathione peroxidase (GSH-Px)	38
3.3.3.2.4.	Determination of liver total superoxide dismutase activity (SOD)	40
3.3.3.2.5.	Determination of total protein in liver tissue	41
3.3.3.3	Histopathological results	42
3.4.	Statistical analysis	42
4.	Results.	45
5.	Discussion	61
6.	Summery and Conclusion	81
7.	References.	86