

ANTIPROLIFERATION EFFECT OF CANTHARIDIN EXTRACTED FROM BLISTER BEETLES ON HEPATOCELLULAR CARCINOMA CELL LINE

THESIS SUBMITTED TO

The Faculty of Science – Ain Shams University

In Partial Fulfillment for the Requirements of the Master of Science

By

Sarah Sayed Hegazy Abd El-Salam

(B.Sc. ENTOMOLOGY)

DEMONSTRATOR - ENTOMOLOGY DEPARTMENT

FACULTY OF SCIENCE- AIN SHAMS UNIVERSITY

Supervised By

Prof. Dr. Nadia Mohamed Lotfy Diwan

Professor of Medical Entomology,

Faculty of Science - Ain Shams University

Ass. Prof. Dr. Hanan Helmy Mohamed

Assistant Professor at the Research and Training Center on Vector of Disease,
Ain Shams University

Ass. Prof. Dr. Manal Asem Emam

Assistant Professor of Biochemistry,

Faculty of Science - Ain Shams University

THESIS EXAMINATION COMMITTEE

NAME	TITLE	SIGNATURE
• • • • • • • • • • • • • • • • • • • •	•••••	•••••

SUPERVISORS

Prof. Dr. Nadia Mohamed Lotfy Diwan

Professor of Medical and Veterinary Entomology, Faculty of Science, Ain Shams University.

Ass. Prof. Dr. Hanan Helmy Mohamed

Research and Training Center on Vector of Disease, Ain Shams University.

Ass. Prof. Dr. Manal Assem Emam

Assistant Professor of Biochemistry, Faculty of Science, Ain Shams University.

BIOGRAPHY

Name: Sarah Sayed Hegazy Abd El-Salam

Degree awarded: B.Sc. (Entomology)

Department: Entomology

Faculty: Science

University: Ain Shams University

Graduation Date: June, 2012

Date of Appointment: February, 2013

Occupation: Demonstrator in Entomology Department, Faculty

of Science, Ain Shams University

M.Sc. Registration Date: October, 2014

Dedication

سورة البقرة الآية: ٣٢

FIRST AND FOREMOST, THANKS TO ALLAH WHO ENABLED ME TO COMPLETE THIS WORK DESPITE ALL THE PROBLEMS THAT FACED ME.

I WISH TO EXPRESS MY PROFOUND, SINCERE APPRECIATION AND SUPREME GRATITUDE TO MY GREAT MENTOR, PROF. DR. NADIA LOTFY DIWAN, PROFESSOR OF MEDICAL AND VETERINARY ENTOMOLOGY, FACULTY OF SCIENCE, AIN SHAMS UNIVERSITY, FOR HER PRECIOUS SUPERVISION AND CONSISTENT SCIENTIFIC ADVICE THROUGHOUT THE WORK.

WARMEST THANKFULNESS GOES ALSO TO **ASS. PROF. DR. HANAN HELMY MOHAMED**, ASSISTANT PROFESSOR AT RESEARCH AND TRAINING CENTER FOR VECTOR CONTROL, FACULTY OF SCIENCE, AIN SHAMS UNIVERSITY, FOR HER SINCERE GUIDANCE, HELPFUL SUGGESTIONS, ENCOURAGEMENT AND PERSISTENT SCIENTIFIC GUIDANCE DURING HER SUPERVISION OF THIS THESIS AND ALLOWING ME TO GROW AS A RESEARCH SCIENTIST.

I WOULD ALSO LIKE TO THANK **ASS. PROF. DR. MANAL ASSEM EMAM**, ASSISTANT PROFESSOR OF BIOCHEMISTRY, FACULTY OF SCIENCE, AIN SHAMS UNIVERSITY FOR HER KIND SUPPORT, ENCOURAGEMENT AND HELPFUL ADVICE DURING THE PROGRESS OF THIS WORK.

ALSO, I FEEL DEEPLY GRATEFUL TO THE STAFF MEMBERS AND MY COLLEAGUES OF THE ENTOMOLOGY DEPARTMENT, FACULTY OF SCIENCE, AIN SHAMS UNIVERSITY.

I ALSO PLACE ON RECORD, MY SENSE OF GRATITUDE TO EVERYONE WHO DIRECTLY OR INDIRECTLY, HAVE LENT THEIR HAND IN THIS VENTURE.

Sarah S. Hegazy

Abstract

Hepatocellular carcinoma is one of the most common cancers worldwide, with high prevalence and very low survival rates because of its resistance to conventional anti-cancer therapies. Cantharidin extracted from blister beetles was considered a promising candidate regarding this problem because of its potent medicinal value. Nuclear factor-kB has been linked to a variety of human diseases, particularly cancers. It is constitutively activated in many types of cancer and can exert pro-tumorigenic functions. This study aimed to evaluate the anti-cancer effect of cantharidin extracted from the oil blister beetle in vitro on human hepatocellular carcinoma and normal human embryonic kidney cell lines (HepG2 and HEK-293). The materials and methods involved extracting cantharidin, testing its purity by FT-IR, and testing its cytotoxicity against HepG2, as a hepatocellular carcinoma model, and HEK-293, as normal control. Afterwards, the NF-kB activity was measured in HepG2 cells after 24 and 48 hours. The results of the cytotoxicity assay on HepG2 and HEK-293 showed that cantharidin exhibited a high inhibitory effect on HepG2 in a timeand dose-dependent manners, this was evidenced by reduction in viable cells count and a statistically significant reduction in NF-kB activity (P<0.01) when compared with the untreated control. The results were confirmed by microscopical observations of cell morphology and NF-kB fold changes. The direct cytotoxicity of cantharidin was much lower against HEK-293 compared with HepG2, indicating a possible selective behavior. It was concluded that cantharidin could be considered a potential anticancer agent against hepatocellular carcinoma.

Keywords: Cantharidin, NF-κB, HepG2, HEK-293, Hepatocellular carcinoma.

LIST OF CONTENTS

LIST OF ABBREVIATIONS	
LIST OF TABLES	
LIST OF FIGURES	
INTRODUCTION AND AIM OF THE STUDY	1
REVIEW OF LITERATURE	6
The Black Blister Beetle (Meloe proscarabaeus)	6
Geographical Distribution	
Biology of the Black Blister Beetle	7
Cantharidin (CA)	8
Cantharidin as a Natural Insect Product	
The Chemical Nature of Cantharidin	10
Pharmaceutical and Therapeutic Uses of Cantharidin	12
Cantharidin Uses in Oncology	13
Hepatocellular Carcinoma (HCC)	15
Risk Factors, Etiology and Global Distribution	16
Management of Hepatocellular Carcinoma	17
Cytotoxicity Assay against Cancer Cell Lines	20
Nuclear Factor-KappaB (NF-кВ)	22
Role of NF-кВ in Tumorigenesis	23
Promoters and Activators of NF-κB	27
The Effect of NF-кВ on Apoptosis	
Polymerase Chain Reaction (PCR)	
Applications of PCR	
Selective DNA Isolation	
Amplification and Quantification of DNA	
Disease Diagnosis	
Limitations	
Real Time Polymerase Chain Reaction (RT-PCR)	
The Basic Principle of RT-PCR	
Advantages of using RT-PCR	
MATERIALS AND METHODS	39
Collection and Rearing of the Black Blister Beetle	43
Collection of Cantharidin	
Purification of Extracted Cantharidin	48
Cytotoxicity Studies	48
Cantharidin Sample Preparation	48
Cell Lines Preparation	
HepG2 and HEK Cell Cultures	49
Cytotoxicity Assay	
Microscopic Examination of HepG2 and HEK-293 Cells	55

List of Contents

Evaluation of the Expression Levels of NF-kB in HepG2	56
Total RNA Extraction	56
Removal of Genomic DNA from RNA Preparations	60
First Strand cDNA Synthesis	60
Determination of the NF-кВ Expression Level by qRT-PCR	61
Agarose Gel Electrophoresis	65
Statistical Analysis	66
RESULTS	67
Characterization of Cantharidin	
The in vitro Cytotoxicity Assay	69
Evaluation of the Expression Levels of NF-kB in HepG2 using qRT-PCR	
Total RNA Extraction	
Determination of the NF-кВ Expression Level by qRT-PCR	79
Discussion	
Characterization of Cantharidin	91
The in vitro Cytotoxicity Studies	92
qRT-PCR Analysis of NF-κB Gene Expression	93
CONCLUSION	97
RECOMMENDATIONS	98
SUMMARY	99
REFERENCES	110
APPENDIX	
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

Abbreviation	Full Term	
°C	Degree Celsius	
%	Percent	
×g	Times Gravity	
μL	Microliter	
μm	Micrometer	
CA	Cantharidin	
cDNA	Complementary Deoxyribonucleic Acid	
cm	Centimeter	
CO ₂	Carbon Dioxide	
CRC	Cantharidin-Related Compound	
Ct	Cycle Threshold	
DMSO	Dimethyl Sulfoxide	
DNA	Deoxyribonucleic Acid	
dNTPs	Deoxynucleotide Triphosphates	
EDTA	Ethylenediaminetetraacetate	
EGF	Epidermal Growth Factor	
FT-IR	Fourier-Transform Infrared	
g	Gram	

h	Hour
HBV	Hepatitis B Virus
нсс	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
IC ₅₀	Median Inhibitory Concentration
ΙκΒα	Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-cells Inhibitor, Alpha
km	Kilometer
L	Liter
М	Mean
MDR	Multi-Drug Resistance
mg	Milligram
min	Minute
ml	Milliliter
mM	Millimolar
mm	Millimeter
mRNA	Messenger Ribonucleic Acid
NF-ĸB	Nuclear Factor-KappaB
nm	Nanometer
OD	Optical Density
PBS	Phosphate-Buffered Saline

Polymerase Chain Reaction
Potential of Hydrogen
Quantitative RT-PCR
Rel Homology Domain
Ribonucleic Acid
Reactive Nitrogen Species
Reactive Oxygen Species
Real Time-PCR
Standard Deviation
Second
Semi-quantitative RT-PCR
Tris-Acetate-EDTA
Tumor Necrosis Factors
Unit
United States of America
Volts

LIST OF TABLES

No.	Title	Page
1	Oligonucleotide primers for RT-PCR.	62
2	Three-step cycling protocol for qRT-PCR.	64
3	Cytotoxic effect of cantharidin against HepG2 cell line after 6, 12, 24 and 48 h of exposure in terms of cell viability (M±SD) and the median inhibitory concentration (IC ₅₀).	70
4	Comparison between the cytotoxic effects of cantharidin against HepG2 and HEK-293 cell lines at 24 h exposure in terms of cell viability (M±SD) and the median inhibitory concentration (IC50).	73

LIST OF FIGURES

No.	Title	Page
1	Rearing cage.	44
2	Cantharidin collector device.	47
3	Design of the micro titer ELISA plate for the cytotoxicity assay.	55
4	FT-IR spectrograph of cantharidin.	68
5	Cytotoxic effect of cantharidin against HepG2 cell line after 6, 12, 24 and 48 h of exposure in terms of cell viability (M±SD) and the median inhibitory concentration (IC ₅₀).	71
6	Cytotoxic effect of cantharidin against HepG2 and HEK-293 cell lines at 24 h exposure in terms of cell viability (M \pm SD) and the median inhibitory concentration (IC $_{50}$).	74
7	Cytotoxic effect of cantharidin (40 µg/ml) against HepG2 cell line at 24 h and 48 h exposure in terms of cell viability compared against the normal controls.	76
8	Cytotoxic effect of cantharidin against HepG2 and HEK-293 cell lines at 24 h exposure in terms of cell viability compared with the normal controls.	77
9	Amplification curve of β -actin and NF- κ B at 24 h by using SYBR green RT-PCR analysis.	81
10	Amplification curve of β -actin and NF- κ B at 48 h by using SYBR green RT-PCR analysis.	82
11	The effect of cantharidin on Nuclear factor-kappaB gene expression (M±SD).	83

12	Agarose gel analysis of qRT-PCR amplification products of NF-κB gene expression of untreated HepG2 cells with zero concentration of CA at 48 h and 24 h, respectively.	85
1;	Agarose gel analysis of qRT-PCR amplification products of NF-κB gene expression of untreated and treated HepG2 cells with zero µg/ml and 10 µg/ml of CA at 24 h and 48 h, respectively.	86
14	Agarose gel analysis of qRT-PCR amplification products of NF-κB gene expression of untreated and treated HepG2 cells with zero µg/ml and 20 µg/ml of CA at 24 h and 48 h, respectively.	87