بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المعدد عن الغبار المعدد عن الغبار المعدد عن العبار المعدد عن العبار عن ١٥-١٠ منوية ورطوية نسبية من ٢٠-١٠ منوية ورطوية نسبية من ٢٠-١٠ المعدد الم

بالرسالة صفحات لم ترد بالاصل

بعض الوثائـــق الأصليــة تالفـه

ASSESSMENT OF SOME TRACE ELEMENTS IN EGYPTIAN MEN WITH ANGIOGRAPHICALLY DEFINED CORONARY ATHEROSCLEROSIS

THESIS SUBMITTED BY Nazek Kamel Aly Safan FOR FULFILLMENT OF PH.D. DEGREE

UNDER SUPERVISION OF

Dr. Ahmed Mohamed Kaddah

A.M. Karlolas

Prof. of Chemistry

Faculty of Science - Ain Shams University

Dr. Nashwa Ahmed Adel El-Badawi Nahwa Mewland. Prof. of Clinical and Chemical Datheland

Ass. Prof. of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Hossom El-Din M. El-Ghetony
Assist. Prof. of Cardiology
Faculty of Medicine - Ain Shams University

Institute of Environmental studied and Research Ain Shams University 1999

Approval Sheet

ASSESSMENT OF SOME TRACE ELEMENTS IN EGYPTIAN MEN WITH ANGIOGRAPHICALLY DEFINED CORONARY ATHEROSCLEROSIS

BY NAZEK KAMEL ALY SAFAN

THIS THESIS FOR PH.D DEGREE IN ENVIRONMENTAL SCIENCES HAS BEEN APPROVED BY:

Dr. Ahmed Mohammed Kaddah

Prof. Of Chemistry - Faculty of Science

- Ain Shams University.

Dr. Nashwa Ahmed Adel El-Badawi Nashwa & Rodeum

Ass. Prof. Of Clinical Pathology - Faculty of Medicine

- Ain Shams University.

Dr. Abd-Elfathah Bastawy Farag

Prof. Of Chemistry - Faculty Of Science

- Helwan University.

Dr. Sawsan Said Hafez

v - Faculty of Medicine

Abel clifatan Bastano

Prof. Of Clinical Pathology - Faculty of Medicine

- Ain Shams University.

ABSTRACT

Coronary heart disease is the leading cause of death in most industrialized countries and its importance as a major public health problem is increasing in developing countries. The aim of this study was to investigate the possible relationship between various trace elements concentrations and lipid profile (as a major risk factor) as well as cardiac enzymes. Seventy five adult male patients suffering from chest pain undergoing coronary angiography. Their ages ranged from 35-60 years. The parameters assessed were copper, zinc, magnesium, ferritin, selenium, lipid profile and cardiac enzymes. Obtained data revealed highly significant decrease in zinc, magnesium and zinc/copper ratio and a non-statistically significant difference was observed in the mean level of copper, selenium and ferritin in patients groups when compared to normal control. Correlation study between lipid profile and the trace elements revealed a significant positive correlation with zinc and magnesium and a significant negative correlation with copper. Furthermore, cardiac enzymes studies revealed a significant negative correlation with zinc, magnesium and selenium, while a positive correlation was shown with copper. ANOVA test revealed a highly significant F-ratio in zinc/copper ratio followed by triglycerides, cholesterol and LDL-C in discriminating patients with coronary artery disease.

ACKNOWLEDGMENT

I am deeply indebted to Professor *Dr. Ahmed Mohamed*Kaddah, Professor of Chemistry, Faculty of Science, Ain Shams

University for his guidance, supervision, support and encouragement.

I would like to express my deepest gratitude and appreciation to *Dr. Nashwa Ahmed Adel El-Badawi, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University* who chose the subject of this thesis, for her kind supervision, moral support and step by step guidance throughout the whole work.

My deepest appreciation goes to *Dr. Hosam El-Ghetany*,

Assistant Professor of Cardiology, Faculty of Medicine, Ain

Shams University for his cordial help in selection of patients and assessing me throughout the clinical part of this thesis.

Finally, I would like to express my deepest gratitude and thanks to *my parents* for their generous help and support during preparing this thesis.

Nazek Safan

LIST OF ABBREVIATIONS

4-AAP 4-aminoantipyrine

AAS Atomic absorption spectrometry

ADP Adenosine diphosphate ALP Alkaline phosphatase ALT Alanine transaminase ANOVA Analysis of variance AST Aspartate transaminase ASV Anodic stripping voltametry ATP BCP Adenosine triphosphate Bromocresol purple BUN Blood urea nitrogen Coronary artery disease CAD Cholesterol esterase CE

Coronary heart disease CK Creatine kinase CO Cholesterol oxidase

Cu Copper

CHD

CX Circumflex artery Deoxyribonucleic acid DNA Electrocardiogram ECG Enzyme immunoassay EIA Emission spectrometry ES

Environmental tobacco smoke **ETS**

Glycerol-1 phosphate dehydrogenase G, PDH Glucose-6-phosphate dehydrogenase G_s PDH

Glycerol kinase GK

High density lipoprotein cholesterol HDI -C

HK Hexokinase

High performance liquid chromatography HPLC ICPES . Inductively coupled plasma emission

spectroscopy

Insulin-dependent diabetes mellitus IDDM Intermediate density lipoproteins IDL

Intramuscular IM

Intima-media thickness IMT

Left anterior descending artery LAD

LCAT : Lecithin cholesterol acetyltransferase

LDH : Lactate dehydrogenase

LDL-C : Low density lipoprotein cholesterol

Lp(a) : Lipoprotein (a)
LPL : Lipoprotein lipase

Mg : Magnesium

MS : Mass spectrometry

NAA : Neutron activation analysis

NAD : Nicotinamide adenine dinucleotide

NADH : Reduced nicotinamide adenine dinucleotide
NCEP : National Cholesterol Education Program
NIDDM : Non-insulin dependent diabetes mellitus

PAI-1 : Plasminogen activator inhibitor-1

PICA : Percutaneous transluminal coronary angioplasty

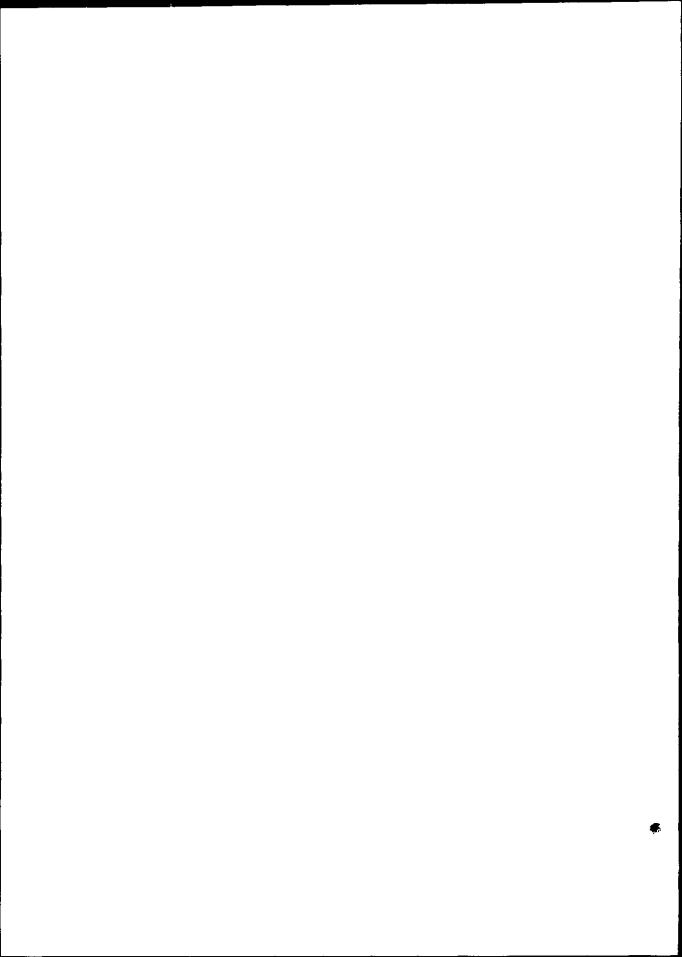
RCA : Right coronary artery
REM : Rapid eye movement
RIA : Radioimmunoassay
RID : Radial immunodiffusion

RNA : Ribonucleic acid

SDIHD : Sudden death ischemic heart disease

Sel : Selenium

S_F : Svedberg flotation index
VLDL : Very low density lipoproteins
XRF : X-ray fluorescence spectrometry


Zn : Zinc

LIST OF FIGURES

Fig. (1):	Model of the relationship between tissue concentration or intake of an essential and dependent biological function
Fig. (2):	Formation of an arteriosclerotic plaque
Fig. (3):	Primary prevention classification by total cholesterol
Fig. (4):	Primary prevention classification by low density lipoprotein cholesterol
Fig. (5):	Secondary prevention classification by low density lipoprotein cholesterol
Fig. (6):	The recommended algorithm for establishing the individual risk of atherosclerosis
Fig. (7):	Coronary arteries
Fig. (8):	Graphite unite model 400
Fig. (9):	Regression analysis showing correlation between Cu and TRG among patient group with two vessel affected
Fig. (10):	Regression analysis showing correlation between Cu and HDL among patient group with one vessel affected
Fig. (11):	Regression analysis showing correlation between Cu and LDL among patient group with one vessel affected
Fig. (12):	Regression analysis showing correlation between Cu and MB among patient group with three vessel affected
Fig. (13):	Regression analysis showing correlation between Cu and LDH among patient group with two vessel affected

- Fig. (14): Regression analysis showing correlation between Zn and Cholesterol among patient group with two vessel affected
- Fig. (15): Regression analysis showing correlation between Zn and HDL among patient group with two vessel affected
- Fig. (16): Regression analysis showing correlation between Zn and LDL among patient group with two vessel affected
- Fig. (17): Regression analysis showing correlation between Zn and MB among patient group with one vessel affected
- Fig. (18): Regression analysis showing correlation between Zn and MB among patient group with two vessel affected
- Fig. (19): Regression analysis showing correlation between Zn and LDH among patient group with no vessel affected
- Fig. (20): Regression analysis showing correlation between Mg and TRG among patient group with no vessel affected
- Fig. (21): Regression analysis showing correlation between Mg and CK among patient group with two vessel affected
- Fig. (22): Regression analysis showing correlation between Mg and MB among patient group with one vessel affected
- Fig. (23): Regression analysis showing correlation between Mg and MB among patient group with two vessel affected
- Fig. (24): Regression analysis showing correlation between Mg and LDH among patient group with two vessel affected

- Fig. (25): Comparative study between all studied groups regarding mean values of Cu
- Fig. (26): Comparative study between all studied groups regarding mean values of Zn
- Fig. (27): Comparative study between all studied groups regarding mean values of Mg
- Fig. (28): Comparative study between all studied groups regarding mean values of Sel
- Fig. (29): Comparative study between all studied groups regarding mean values of ferritin
- Fig. (30): Comparative study between CAD and non-CAD regarding mean level of Cu, Ferritin and Zn
- Fig. (31): Comparative study between CAD and non-CAD regarding mean level of Mg and Zn/Cu ratio
- Fig. (32): Comparative study between CAD and non-CAD regarding mean level of Selenium

