Search for Dark Matter Produced in Association with Neutral Gauge Boson at the LHC

Ashraf Kasem Abdellatif Mohamed

Physics Department, Faculty of science, Ain Shams University

Supervision Committee

1- Asst. Prof. Esraa El-Khateeb

Physics Department, Faculty of Science, Ain Shams university, Cairo, Egypt.

2- Dr. Ahmed Ali Abdelalim

Physics Department, Faculty of Science, Helwan university, Cairo, Egypt.

3- Dr. Mohamed Ahmed Abbass

Physics Department, Faculty of Science, Ain Shams university, Cairo, Egypt.

Department of Physics

University of Ain Shams

This dissertation is submitted for the degree of Master of Science

Faculty of Science

August 2017

APPROVAL SHEET

Title of the M.Sc. thesis

Search for Dark Matter produced in association with Neutral Gauge Boson at the LHC

Name of Candidate

Ashraf Kasem Abdellatif Mohamed

Supervisors

1- Asst. Prof. Esraa El-Khateeb

Physics department, Faculty of Science, Ain Shams University,

Cairo, Egypt.

2- Ahmed Ali Abdelalim

Physics department, Faculty of Science, Helwan University,
Cairo, Egypt.

3- Dr. Mohamed Ahmed Abbas

Physics department, Faculty of Science, Ain Shams University, Cairo, Egypt.

DEDICATED TO THE MEMORY OF MY BELOVED PARENTS WHO HAD BEEN THE
GREATEST SOURCE OF INSPIRATION OF ALL MY WORK AND WHO HAVE LEFT ME FOR THEIR HEAVENLY ABODE

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements.

Ashraf Kasem Abdellatif Mohamed Physics Department, Faculty of science, Ain Shams University August 2017

Acknowledgements

I would like to acknowledge **Prof. Dr. Tawfik Eldessouky** for his great support to my profile and for this thesis, his role is really like father. Also i will never forget my Supervisor **Asst. Prof. Esraa El-Khateeb** for her fruitful and helpful discussions and great support in all phases of this thesis. I've learned from here, along with science, sincerity in working, support rights and helping others unconditionally.

I hope that God accept **Prof. Dr. Mostafa Shalaby** in his heaven, he was a keen and loving scholar and was a reason for my love and passion for that kind of science.

Dr. Ahmed Ali Abdelalim for his great support in the analysis and pushing up my carrier profile with his deep and unique knowledge in that kind of work.

Dr. Mohamed Ahmed Abbas for his support in theoretical side and his fruitful discussion in the QFT and Lie-Algebra.

Dr. Amr Mohamed the team leader of CERN-CMS group in Egypt for giving me the full support and facility every thing to finalize this thesis from logistics support to group management and collaboration with others.

Dr. Hala Hosny, i would like to say not only because she represents the role of mother of the whole department, but she's also plays a real role for me either in that thesis or in my life in general.

My beloved wife **Asmaa Abd El-Baset** and beloved daughter **Fardia**, without them being in my life, i would not have completed the work of this thesis, thank you for being in my life. Mono Z group, who did a great efforts for this thesis to be finalized especially **Nicholas Charles Smith** (University of Wisconsin (US)). **Andreas Albert** (RWTH Aachen University(Germany)), **Daniele Trocino** (Northeastern University, (US)) and **Bhawna Gomber** (University of Wisconsin (US)) for working with them and helping me to develop my experience and knowledge in CMS analysis in general and Dark Matter research work related to this thesis.

Finally i would like to say thank you for all my colleagues, in physics department - Ain shams University, mathematics department - Cairo University, for example but not limited to, Waleed Abdallah, Mustafa Ashry, Ahmed ElSayed Moursy and Ali Gamal Elsayed for their support, scientific discussions and the brotherhood between us.

Abstract

The Standard Model of Particle Physics is the most successive theory that describes the basic structure of matter and interactions between the fundamental particles. Standard Model of particle Physics does not contain any good Dark Matter candidate, and there is no detectable interaction except the gravitational one between the DM and SM particles.

First analysis in this thesis is searching for dark matter in events with a Z boson and missing transverse momentum in proton-proton collisions at a center of mass energy of 13 TeV using events containing two charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb^{-1} of pp collisions at the LHC at a center-of-mass energy of 13 TeV. No excess over the standard model expectation is observed. The results are interpreted in terms of a simplified model of DM production for both vector and axial vector couplings between a mediator and DM particles. Additionally, effective field theories of DM and unparticle production are used to interpret the data.

This Analysis is published as a paper in JHEP [DOI:10.1007/JHEP03(2017)061].

A second analysis performed in the thesis is a search for new physics in events with a Z boson produced in association with large missing transverse momentum with the CMS experiment at the LHC. This search is interpreted in a simplified model with a spin-1 dark matter mediator and in a model with a standard model Higgs-like scalar particle, each produced in association with the Z boson and decaying invisibly. The search is done using 2016 data sample of proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 12.9 fb^{-1} . No excess over the standard model expectation is observed. The results are interpreted in terms of a simplified model of DM production for both vector and axial vector couplings between a mediator and DM particles. Additionally, a model with a standard model Higgs-like scalar particle, each produced in association with the Z boson and decaying invisibly are used to interpret the data.

This Analysis is published as Physics Analysis Summary (PAS) EXO - 016 - 038 on CERN data base.

The last analysis performed on the full 2016 data-set with 35.9 fb^{-1} . The results of this

search are interpreted in terms of a simplified model of dark matter production with spin-0 or spin-1 mediators and a standard model Higgs boson decaying invisibly and produced in association with the Z boson, as well as unparticle model. For all models, no significant deviation from the background expectation is found, and limits are set with respect to relevant model parameters.

This analysis is published as a Physics Analysis Summary (PAS) EXO - 016 - 052 on CERN data base, and a paper ready for submission.

Table of contents

Li	List of figures									
Li	st of t	ables		xxi						
1	Intr	roduction								
	1.1	Standard Model								
		1.1.1	Gauge principle	2						
		1.1.2	Spontaneous symmetry breaking	4						
		1.1.3	Electroweak theory of interactions	6						
		1.1.4	Quantum chromodynamics and Hadronic collisions	9						
		1.1.5	Motivations for Beyond Standard Model	10						
	1.2	Dark N	Matter overview	11						
		1.2.1	Evidences of dark matter	11						
		1.2.2	Dark Matter Candidates	15						
	1.3	.3 Dark matter formation		20						
		1.3.1	Solutions for dark matter	23						
2	The	ory		25						
	2.1	Introd	uction	25						
	2.2	Detect	ion of the dark matter	26						
	2.3	Effecti	ive Field Theory (EFT) models	26						
		2.3.1	Quark anti-quark coupling	27						
		2.3.2	Pair gauge bosons coupling	28						
	2.4	Simpli	ified models	28						
		2.4.1	vector mediator	29						
		2.4.2	scalar mediator	30						
	2.5	Unpar	ticle model	31						
	26	Invicib	ole decay of the SM Higgs Roson	32						

xii Table of contents

	2.7	Impler	Implementation of the theoretical models				
		2.7.1	Simplified models and EFT implementation	33			
		2.7.2	Unparticle model implementation	34			
		2.7.3	Invisible Higgs implementation	34			
	2.8	Statisti	ical interpretation of the results	34			
		2.8.1	Limit calculations	34			
3	CMS	S detect	tor and Physics Object Reconstruction	41			
	3.1	Introdu	uction	41			
	3.2	The Cl	MS tracking system	44			
		3.2.1	Pixel tracker	44			
		3.2.2	Strip tracker	45			
	3.3	The ele	ectromagnetic calorimeter ECAL	46			
	3.4	The ha	adron calorimeter HCAL	46			
	3.5	The su	per conducting magnet	47			
	3.6	The m	uon system	47			
		3.6.1	Drift tube chambers (DT)	49			
		3.6.2	Cathode strip chambers (CSC)	49			
		3.6.3	Resistive plate chamber (RPC)	50			
	3.7	Muon	Trigger and Data Acquisition	50			
		3.7.1	Level-1 trigger (L1)	50			
		3.7.2	High-Level trigger (HLT)	51			
	3.8	Physic	es Object	51			
	3.9	Track	and primary-vertex reconstruction	51			
		3.9.1	Track reconstruction	52			
	3.10	Event	reconstruction	55			
4	Resu	ılts		57			
	4.1	Introdu	uction	57			
		4.1.1	The CMS detector	60			
		4.1.2	Simulation	61			
		4.1.3	Background composition	62			
	4.2	Search	for dark matter in events using of 2015 data	63			
		4.2.1	Event selection	63			
		4.2.2	Background estimation	64			
		4.2.3	Efficiencies and systematic uncertainties	67			
		4.2.4	Results	69			

Table of contents xiii

4.3	Search	for dark matter in events using $12.9fb^{-1}$ of 2016 data	75
	4.3.1	Search strategy	76
	4.3.2	Background estimation	78
	4.3.3	Efficiencies and systematic uncertainties	79
	4.3.4	Results	80
4.4	Search	for dark matter in events using Full 2016 datasets - Preliminarily	85
	4.4.1	Event selection	85
4.5	Backg	round estimation	86
	4.5.1	Resonant diboson background	86
	4.5.2	Nonresonant backgrounds	89
	4.5.3	Drell-Yan background	90
4.6	Efficie	ncies and systematic uncertainties	90
4.7	Multiv	ariate analysis	92
4.8	Result	s	93
	4.8.1	Dark matter interpretation	95
	4.8.2	Unparticle interpretation	95
	4.8.3	Limit on invisible Higgs boson decays	97
Referen	ices	1	01
Append	lix A P	reliminarily results with $35.9fb^{-1}$	13
A.1	change	es in the new analysis	13
	A.1.1	changes in the event selection	14
	A.1.2	changes in the EWK corrections	14
	A.1.3	changes in the VV Background Estimation	15
A.2	prelim	inarily results and improvements	15
Append	lix B A	analysis code demo 1	19
B.1	Demo	for the code	19