

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Tanta University Kafr El-Sheik Faculty of Agriculture Food Technology Department

Chemical and technological studies on Mono-sex Bolti fish

By

AMIN KAMAL AMMAR.

B. Sc. (Agric.), Tanta University, 1996.

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree Of Master of science In Food Technology

Food Technology Department
Faculty of Agriculture
Kafr El-Sheikh
Tanta University
1999

SP 2547

Chemical and technological studies on mono-sex Bolti fish.

Present by:
Amin Kamal Ammar.
For the degree of
M. Sc.
In
Food Technology

Examiner's Committee	Approved
Prof. Dr. Ahmed E. Kassem	
Professor of food Industries Faculty of	A2 Kaster
Agriculture, Mansora Univ.	04 6 201/100
Prof. Dr. Samir A. El-Kady	
Professor of food technology Faculty of	Some I have
Agriculture, Kafr El-Sheikh Tanta Univ.	
Prof. Dr. Montaser R. Nour El-Din	112
Professor of food technology Faculty of	FIRMAN
Agriculture, Kafr El-Sheikh Tanta Univ.	
Prof. Dr. KamaL M. El-Nemr	Vanalil Ninch
Professor of food technology Faculty of	K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Agriculture, Kafr El-Sheikh Tanta Univ	
_ :	O

Date: 91211999.

<u>Acknowledgment</u>

I whish to express his faithful gratitude to Prof. Dr. Samir A. El-Kady, Professor of Food Technology department, Faculty of Agriculture, Kafr El-Sheik, Tanta University, for his supervision and valuable guidance through this work.

My heart felt thanks due to Prof. Dr. Kamal M. El-Nemr, Professor of Food Technology Department, Faculty of Agriculture, Kafe El-Sheik, Tanta University. Many thanks to him not only for supervising the research project and reviewing the manuscript but also for his criticism, valuable recommendation and continuous help throughout the course for this study.

Also, my appreciation is due to Dr. Abd El-Baset A. Salama, lecturer of Food Technology Department, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, for his help and critical guidance.

Grateful acknowledgement and sincere thanks are also extended to all staff members and workers of Food Technology Department, Faculty of Agriculture, Kafr El-Sheik, Tanta University.

DEDICATED TO

My

Father

Mother

SISTER

FOR THERE HELP AND SUPPORT

TO FINISH THIS

INVESTIGATION

<u>Contents</u>

INTR	ODUCTION	1
REVI	EW OF LITERATURE	7
1. Prochem 1.1 1.2 1.3 1.4 1.5 1.6 1.7	oximate composition and effect of technological process on nical composition of fish. Moisture Protein Fat Ash Nitrogenous compounds pH value Amino acids	11 14 16 17 20
2. Mie 2.1 Te	crobiological qualities otal viable Bacterial counts	22 22
3. Or	ganoleptic qualities	23
4. Ph	ysical properties	25
MATE	ERIALS AND METHODS	27
1. Ma	terials	27
2.1 Cl 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	thods hemical analysis Proximate chemical analysis Amino acids Total volatile bases (T.V.B) Nitrogenous compound pH value Isoelectric focusing of sarcoplasmic proteins	28 29 30 30 31
2.2 Mi 2.2.1	icrobiological qualities Total viable Bacterial counts	32 33
3. Eva	lluation of organoleptic qualities	33
4.1 Dr	vsical propertiesip contentstological changes	34
5.1 Cc	oking qualityooking methodsganoleptic qualification of cooking	35

<u>Contents</u>

INTRODUCTION	1
REVIEW OF LITERATURE	7
Proximate composition and effect of technological process on chemical composition of fish. Moisture	0
1.2 Protein	11
1.3 Fat	
1.5 Nitrogenous compounds	17
1.6 pH value	20 20
Microbiological qualities	22
3. Organoleptic qualities	23
4. Physical properties	25
MATERIALS AND METHODS	27
1. Materials	27
2. Methods	28
2.1 Chemical analysis 2.1.1 Proximate chemical analysis	28 28
2.1.2 Amino acids	29
2.1.3 Total volatile bases (T.V.B)	30
2.1.4 Nitrogenous compound	30 31
2.1.6 Isoelectric focusing of sarcoplasmic proteins	31
2.2 Microbiological qualities	32
2.2.1 Total viable Bacterial counts	33
3. Evaluation of organoleptic qualities	33
4. Physical properties	34
4.1 Drip content4.2 Histological changes	34 34
5. Cooking quality	
5.1 Cooking methods	35
5.2 Organoleptic qualification of cooking	3

RESULTS AND DISCUSSION	37
1.1 Morphological properties	. 37
1.2 Chemical composition or raw material	. 39
2. Effect of freezing and frozen stored on proximate composition	
of fish	
2.1 Moisture content	
2.2 Crude protein	
2.3 Ether extract	
2.4 Ash content 2.5 Total amino acids	
2.6 Total volatile bases	. 52
2.7 Nitrogenous compounds	
2.8 pH value	. 54 56
2.9 Isoelectric focusing patterns of sarcoplasmic protein	59
3. Microbiological qualities	61
3.1 Total viable Bacterial counts	61
4. Organoleptic qualities	63
5. Physical properties	65
5.1 Drip content	65
5.2 Histological changes	67
6. Cooking quality	72
6.1 Cooking methods	72
6.2 Organoleptic qualification of cooking	76
SUMMARY	80
REFERENCE	85
ARABIC SUMMARY	

NTRODUCTION

1

1.Introduction

Fish are one of the excellent and important sources of high quality protein in many countries allover the world. Fish production account for 20 % of the protein requirement of Arab Republic of Egypt (A.R.E) which is extremely low comparing with other countries. In the past few years has been considered as the most widely used protein sources in many of developing countries, and in A.R.E. Increasing of fish production is one of the main objects of the government to cover the existing gap between production and consumption of animal protein. Fish resemble meats in composition, being high in protein and very low in carbohydrates. Fish proteins are more easily to be completely digested and assimilated in the body than the protein of beef, (Tressler and Lemon, 1960).

Nile Bolti fish (<u>Oreochromis</u> <u>niloticus</u>) are one of the delicious fish for Egyptian consumers and the most popular fish in A.R.E. At Kafr El Sheikh governorate, we have different sources for collection of this fish, as governmental fish farms (Khashaa and El Zawia farms), private fish farms, Brollus lake, drains and canals.

In recent years, there is a rapid increase in the production of farm grown fish in A.R.E. From table (1) we can observed that the production of Bolti fish was increased in A.R.E from 127746 tons in 1992 to 153010 tons in 1996. Table (2) shows that the production of both Nile Bolti fish and mono sex Bolti fish in Kafr El Sheik governorate from 1992 to 1997. It

is noticed that the total production of Nile Bolti increased from 3890 tons to 37400 tons also mono sex Bolti fish increased from 105 tons to 450 tons.

*Table (1): Total production of Bolti fish in A.R.E (in tons).

Years	Production in tons
1992	127746
1993	121444
1994	129241
1995	131887
1996	153010

^{*} Annul report of Organization for Aquarium Development, (Nasr city, Cairo) 1998.

*Table (2): Total production of both Nile and mono-sex Bolti fish in Kafr El-Sheik governorate (in tons).

Years	Common	Mono-sex Bolti
	Bolti fish	fish
1992	3890	105
1993	4000	160
1994	4044	240
1995	7446	310
1996	46843	390
1997	37400	450

^{*} Kafr El-Sheikh governorate statistical year 1998.

Nile Tilapia (Nile Bolti fish) is a genus of tropical fishes, belonging to the Cichlid family. The genus is thought to have existed for about 24 million years. There are 14 species of Tilapia, all native to tropical fresh waters of Africa. Several species are popular aquarium fishes because of their interesting