A STUDY OF INTERLEUKIN-4 AND INTERFERON-GAMMA AS PREDICTIVE INDICES FOR EARLY DETECTION OF ASTHMA IN WHEEZY INFANTS

Thesis
Submitted for Partial Fulfillment of MD Degree in Pediatrics

By
Nasser Gamal Moawad
(Msc. Pediatrics)

Under Supervision of

DR. FATMA MOHMED MOKHTAR ELHENEIDY

Prof. of Pediatrics Faculty of Medicine Cairo University

DR. GAMAL ELDEIN MOHMED TAHA

Asso. Prof. of Pediatrics Beni Suef Faculty of Medicine Cairo University

DR. MONA AZIZ IBRAHEIM

Asso. Prof. of Clinical Pathology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2007

سورة البقرة الاية٣٢

ACKNOWLEDGMENT

Many thanks to Prof Dr Fatma Mohamed Mokhtar El heneidy Prof of Pediatrics, Faculty of Medicine, Cairo University who direcected and helped me so much to perform this work.

Many thanks to Prof Dr Gamal eldein Mohamed Taha Asso. Prof of Pediatrics, Faculty of Medicine, Bnni Sewf University who direcected and helped me so much to perform this work.

Special thanksto Prof Dr Mona Aziz Ibraheim Asso. Prof of Clinical Pathology, Faculty of Medicine, Cairo University who direcected and helped me so much to perform this work.

Abstract

Childhood wheeze is common. It usually begins in early life, and may then persist into later life. Asthma is preceded by a stage of recurrent episodes of wheezing during the first years of life and proper treatment during symptomatic episodes may delay progression to persistent asthma. Th2 type cytokines,IL-4 is a as key regulator factor in asthma. INF-γ antagonizes IL-4-dependent IgE production. IL-4/ IFN-γ ratio was greater in children with asthma compared with control children The aim of this study is to determine the level of IL-4 and INF-gamma in early onset wheezy children to detect those who may develop asthma for early prevention and better prognosis.

Key words:

INTERLEUKIN-4 – INTERFERON – ASTHMA IN WHEEZY INFANTS

CONTENTS

	Page
Introduction and aim of work	1
Review of literature	
Wheezing phenotypes in preschool children	3
Allergy and Asthma	8
Bronchial asthma	10
Clinical phenotypes of asthma	12
Epidemiology of asthma	14
Risk factors for development and persistence of asthma	16
Infections and asthma	32
The early life origin of asthma and related disorders	50
Hygiene Hypothesis	61
Pathogenesis of asthma	76
Inflammatory cells in asthma	82
Pathology of asthma	98
Airway remodeling	107
Inflammatory mediators in asthma	116
Histamine and asthma	120
Serotonin and asthma	123
Adenosine and asthma	124
Leukotrienes and asthma	125
Diagnosis of asthma	129
Cytokines in asthma	139
IL-4 and asthma	151
Interferon gamma and asthma	178
Chemokines and asthma	185
Growth factors and asthma	190
Subjects and methods	193
Results	201
Discussion	244
Conclusion	266
Recommendations	268
Summary	271
References	274
Arabic summary	359

LIST OF ABBREVIATIONS

AR Airway Responsivness

PW Persistent Wheeze

ICS Inhaled Cortocosteroids

RSV Respiratory syncitial virus

SR aw Specific Resistance of airways

Th T helper

IL Interleukin

IgE Immunoglobulin E

TGF Transforming Growth Factor

IFN-γ Interferon Gamma

WARI Wheezing Associated Respiratory infections

RANTES Regulation on Activation Normal T Cell Expressed and

Secreted

ECP Eosinophil Cationic Protein

PCR Polymerase Chain Reaction

LPR Late Phase Reaction

EGFR Epithelial Growth Factor Receptor

ARS Adenosine Receptors

FVC Forced Vital Capacity

FEV1 Forced Expiration Volume in One Second

RTCS Randomised Control Trials

PGS Prostaglandins

APC Antigen Presenting Cells

DCS Dendretic Cells

GM-CSF Granulocyte Monocyte Colony Stimulating Factor

PMNS Polymorph nuclear neutophils

CFT Complement Fixation Test

NK Natural Killer Cells

PDGF Platelet-derived growth factor

FGF Fibroblast growth factors

VCAM-1 Vascular cell adhesion molecule-1

TNF-α Tumor necrosis factor alpha

IL-1RA IL-1 Receptor antagonist

ASM Airway smooth muscle

NO Nitric oxide

TGF- β Transforming growth factor β

SCF Stem cell factor

VIP Vasoactive intestinal polypeptide

HIV Human immunodeficiency virus

NAP-2 Neutrophil activating protein 2

GCP-2 Granulocyte chemotactic protein 2

Igf Insulin-Like Growth Factor

VEGF Vascular endothelial growth factor

CAPS Canadian Primary asthma Prevention Study

FCERI Fragment crystallizable Receptors with high-affinity for

IgE

LIST OF TABLES

Table (1)	Individuals with asthma are frequently sensitized to more than one allergen	8
Table (2)	Probable importance of timing of exposure to environmental agents in development of postnatal asthma	56
Table (3)	Celluar Source of Inflammatory Mediators in Inflammed Airways	94
Table(4)	Differntial diagnosis of Wheezing in preschool children .	133
Table (5)	Cytokine Profile of Human CD4 Cell Subsets	140
Table (6)	Summary of some key cytokines in atopy	141
Table (7)	Biological properties of interleukin (IL)-13 relevant to asthma	162
Table (8)	Endogenous Antiinflammatory Mechanisms In Asthma	175
Table (9)	Multiple Antiinflammatory And Immunosuppressive Effects Of Il-10	177
Table (10)	Chemoattractant effects of chemokines.	178

LIST OF TABLES OF THE RESULTS

Table (1)	Demographic and Clinical data of studied patients	201
Table (2)	Comparison of mean age of patient and control groups	202
Table (3)	Sex distribution among wheezy subjects and control groups	202
Table (4)	Age of onset (months) in wheezy patient group	203
Table (5)	Duration of illness (months) among wheezy patient group	204
Table (6)	Upper respiratory symptoms in studied patients	204
Table (7)	Residence of wheezy patients and control	206
Table (8)	Exposure to passive smoking among patients and control	208
Table (9)	Frequency of atopic manifestations among wheezy group	209
Table (10)	Family history of asthma among studied patients	201
Table (11)	Frequency of high risk factors for asthma among wheezy subjects	211
Table (12)	Comparison of mean age of high risk patients and low risk patients subgroups	212
Table (13)	Age of onset and duration of illness in wheezy patients at high risk for asthma and those at low risk for asthma	212
Table (14)	Comparative demographic and clinical data between wheezy subjects and control groups	214
Table (15)	Comparative data of IL-4 between wheezy subjects and control groups	215
Table(16)	Comparative data of IL-4 in wheezy subjects with high risk factors for asthma and those with low risk factors for asthma	216
Table (17)	Comparative data of IFN-γ between wheezy children and control groups	217
Table (18)	Comparative data of IFN-γ in wheezy subjects with high risk factors for asthma and those with low risk factors for asthma	218
Table (19)	Comparative data of total serum IgE (IU/ml) between wheezy patient and control groups	219
Table (20)	Comparative data of IgE in wheezy subjects with high risk factors for asthma and those with low risk factors for asthma	220

Table (21)	Comparison of patients and control haematological data	221
Table (22)	Comparison between AEC (cell/cmm) in wheezy patients and control group.	222
Table (23)	Comparative data of AEC in wheezy subjects with high risk factors for asthma and those with low risk factors for asthma	223
Table (24)	Comparison of laboratory data between wheezy subjects and control.	224
Table (25)	Comparison of high risk and low risk laboratory data.	225
Table (26)	Correlation between duration of illness and IL-4, IFN-γ, IgE and AEC in high risk patients	226
Table (27)	Correlation between duration of illness and IL-4, IFN-γ, IgE and AEC in low risk subgroup	226
Table (28)	Correlation between Age of onset and IL-4, IFN-γ, IgE and AEC in high risk patients	229
Table (29)	Correlation between Age of onset and IL-4, IFN-γ, IgE and AEC in low risk subgroup	229
Table (30)	Correlations between IL-4 and IFN-γ in all wheezy Patients	235
Table (31)	Correlations between IL-4 and IFN-γ in control group	236
Table (32)	Correlations between IL-4 and IFN-γ in the high risk subgroup	237
Table (33)	Correlations between IL-4 and IFN-γ in the low risk wheezy subgroup	238
Table (34)	Correlations between IL4, IFN-γ, IgE, ACE, Age of onset and Duration of Illness in all wheezy patients	239
Table (35)	Correlations between IL4, IFN-γ, IgE and AEC in control group	240
Table (36)	Correlations between IL4, IFN-γ, IgE, AEC, Age of onset and Duration of Illness in high risk for asthma wheezy subgroup	241
Table (37)	Correlations between IL4, IFN- γ , IgE, AEC, Age of onset and Duration of Illness in low risk for asthma wheezy patient subgroup	242

LIST OF FIGURES

Figure(1)	Central Role of IL-12 in Maturation of Type1 Immunity	41
Figure(2)	T Cell of atopic individual and its relation to IFN γ	62
Figure(3)	Factors favoring Th1 or Th2 phenotypes	63
Figure(4)	Postnatal Immune Modulation	66
Figure(5)	Pathogenesis of bronchial asthma	72
Figure(6)	Reducing IgE concentration results in inhibition of mast cell and eosinophil degranhlation and cytokine production	81
Figure(7)	Role of eosinophils in airway remodelling	87
Figure(8)	Schematic presentation of the ligands secreted and affected by Th2 cells during an allergic asthma	90
Figure(9)	production of IL-1 and TNF-α lead to production of the transcription factor NF-KB and TARC expression. TARC expression leads to recruitment of Th2 cells	91
Figure(10)	Toll like receptor (TLR)	105
Figure(11)	Airway inflammation and remodelling in asthma.	110
Figure(12)	Airway inflammation and remodelling in asthma	110
Figure(13)	T helper cell subsets and related cytokines	147
Figure(14)	Pleiotropic activities of T helper type 2 (TH2)-type cytokines in allergic asthma	149
Figure(15)	Source and effect of IL-4 and IL-13	154
Figure(16)	Signal transduction pathway and polymorphisms of the interleukin 4 (IL-4)/IL-13 receptors. IL-4 can bind to two distinct receptor complexes	156
Figure(17)	Genetic pathway mediating independent IFN- γ production in T cells	180

LIST OF FIGURES OF THE RESULTS

Figure(1)	Sex distributions among patients	203
Figure (2)	Sex distribution among control	203
Figure (3)	Upper respiratory symptoms in studied cases	205
Figure (4)	Precipitating factors in wheezy subjects	205
Figure (5)	Seasonal variation of symptoms	206
Figure (6)	Residence of wheezy subjects	207
Figure (7)	Feeding pattern among wheezy subjects	207
Figure (8)	Exposure to passive smoking among patients	208
Figure (9)	Exposure to passive smoking among control	208
Figure(10)	Frequency of atopic manifestations among wheezy group	209
Figure (11)	Frequency of atopic manifestations among wheezy group	210
Figure (12)	Frequency of high risk factors for asthma and low risk factors for asthma among wheezy subjects	211
Figure (13)	Mean age of onset (in months) in high risk and low risk subgroups	213
Figure (14)	Mean duration of illness (in months) in high risk and low risk subgroups	213
Figure (15)	Level of IL-4 in wheezy subjects and controls	215
Figure (16)	Level of IL-4 in wheezy subjects with high risk factors for asthma and those with low risk factors for asthma	216
Figure (17)	Level of IFN-γ in patients and control	217
Figure (18)	IFN-γ in wheezy subjects with high risk factors for asthma and those with low risk factors for asthma	218
Figure (19)	Level of IgE in wheezy subjects and controls	219
Figure (20)	Level of IgE in wheezy subjects with high risk factors for asthma and those with low risk factors for asthma	220
Figure (21)	Level of absolute Eosinophil count in wheezy subjects and controls	222

Figure (22)	Level of absolute Eosinophil count in high risk wheezy subgroup and low risk wheezy subgroup	223
Figure (23)	Correlation between duration of illness and IgE in wheezy patient group	227
Figure (24)	Correlation between duration of illness and absolute eosinophil count in wheezy patients group	228
Figure (25)	Correlation between age of onset and IL-4 in wheezy subjects group	230
Figure (26)	Correlation between Age of onset and IL-4 in high risk patients	231
Figure (27)	Correlation between age of onset and IFN-γ in all patient groups	232
Figure (28)	Correlation between IFN-γ and IgE in low risk wheezy patient subgroup	233
Figure (29)	Correlation between age of onset and absolute eosinophil count in wheezy patients group	234
Figure (30)	Correlations between IL-4 and IFN-γ in all wheezy Patients	235
Figure (31)	Correlations between IL-4 and IFN-γ in control group	236
Figure (32)	Correlations between IL-4 and IFN-γ in high risk for asthma patients subgroup	237
Figure (33)	Correlations between IL-4 and IFN-γ in low risk for asthma patients subgroup	238

Introduction and Aim of the Work

CD4+T helper cells are strongly implicated in asthma pathogenesis. Immune responses to allergens are regulated by competing T helper 1 (Th1) and Th2 cell populations. Atopic disease is associated with Th2-skewed immune response to allergens (**Zdolsc et al 2003**)

Th2 type cytokines (interleukins IL-4, IL-5, IL-9, IL-13) regulate eoninophillia, mast cell growth, IgE, and mucus production and have been proposed as key regulator factor in asthma. Th1 type cytokines include interferon-gamma, IL-2, IL-12, IL-18, and tumor necrosis factor beta (Anderson, 2002).

Interferon-gamma (IFN- γ) antagonizes Interleukin-4 (IL-4) dependent IgE production as well as IL-5-induced proliferation an activation of eosinophils (**Biller et al, 2003**)

IL-4 and INF- γ are thought to play an important role in chronic airway inflammation in asthmatic subjects. In asthma there is increased expression of the Th2 type cytokine IL-4. IL-4 induces immunoglobulin E and adhesion of eosinophils to endothelium (**Fetich et al, 2003**).

The cytokine interleukin 12 (IL-12) is believed to play a central role in the regulation of immune differentiation of T lymphocytes. IL-12 is also produced by antigen-presenting cells (APCS) and its production is enhanced by microbial products such as lipopolysaccharides and viral nucleic acid (Mallia and Johnston, 2002).

The antiviral immune response is made up of innate (nonspecific) and specific components, and require the coordinated action of many different cell types including neutrophils, macrophages, eosinophils, dendritic cells,

epithelial cells, mast cells natural killer cells and B-and T-lymphocytes. Coordination of this response involves numerous cytokines and chemokins (Message and Johnston 2001).

It is believed that respiratory syncytial virus (RSV) may have unique effect on the infant respiratory tract in that it may be capable of inducing allergic sensitization and asthma. A positive association was reported between RSV of lower respiratory tract in infants and subsequent wheezing (**Sigurs et al, 2000**).

Infants experiencing severe respiratory syncitial virus (RSV) bronchiolitis have an increased frequency of wheeze and asthma in later childhood (Culley et al, 2002).

Th1 dysregulation associated with a Th2 response may modify the immune response to viral infection by altering the balance of T-cell cytokines from type 1 to type 2 in mixed immune response (**Message and Johnston 2001**).

Aim of the Work

As IL-4 is elevated and INF- γ is decreased in asthma. It is suspected to find similar changes in patients with prolonged or recurrent wheezy chest and these changes can be used as a prediction of early onset asthma. The aim of this study is to determine the level of IL-4 and INF- γ in early onset wheezy children with prolonged or recurrent wheezing whether following bronchiolitis or not to detect those who will develop asthma. As early diagnosis of early onset asthma has an important implication for early theraputic intervention and better prognosis.