Recent Updates in Treatment of Multiple Sclerosis

An Essay

Submitted for partial fulfillment of master degree in Neurology and Psychiatry

Presentd by

Rana Magdy Mohamad El Amin

(M.B.B.ch)

Under Supervision of

Prof. Dr./ Hany Mohamed Amin Aref

Professor of Neurology and Psychiatry Faculty of Medicine – Ain Shams University

Prof. Dr/ Nahed Salah El Deen Ahmed

Professor of Neurology and Psychiatry Faculty of Medicine – Ain Shams University

Dr/ Haytham Hamdy Salem

Lecturer of Neurology and Psychiatry Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2014

بِسْمِ اللَّهِ الرّحمَٰنِ الرّحيمِ

الَّزِتَى الْمُومِي عَلَيْ وَ عَلَى وَالْحَيَّ […رَبِّ اَوْزَعَنِيَ اَلَىٰ اَشِكُرَ نَمُمَلَكَ

[फ़र्काह्म विवास्त क्ष्म विवास विवा

صدق الله العظيم

النمل.. اية رقم ١٩

Acknowledgments

Thanks to **ALLAH** first and foremost. I feel always indebted to Allah; the Most Kind and the Most Merciful.

I would like to express my gratefulness and respect to **Prof. Dr/ HanyMohamed Amin Aref,** Professor of Neurology and Psychiatry, Faculty of Medicine –Ain Shams University, for his moral and scientific support and for giving me the honor of working under his supervision and valuable guidance.

Special thanks and deepest gratitude go to **Prof. Dr/ Nahed Salah El Deen Ahmed,** Professor of Neurology and Psychiatry, Faculty of Medicine –Ain Shams University, for her constructive and instructive comments, valuable guidance throughout the work and for her scientific advices.

I would like also to express my great thanks to **Dr/Haytham Hamdy Salem**, Lecturer of Neurology and Psychiatry, Faculty of Medicine –Ain Shams University for his valuable help and greate efforts during the whole work.

I can't forget to thank my **Husband** and all **members** in my **Family** for their support and encouragement

浑 Rana Magdy Mohamad El Amin

List of Contents

Title	Page
List of Abbreviations	i
List of Figures	iv
List of Tables	vi
Introduction	1 -
Aim of the Work	4
Chapter (1): Pathogenesis of Multiple Sclerosis	5
Chapter (2): Diagnosis of Multiple Sclerosis	42
Chapter (3): Management of Multiple Sclerosis	63
Discussion	128
Summary	145
Recommendations	152
References	153

List of Abbreviations

Abbrev.	Full term
ADCC	: Antibody dependent cellular cytotoxicity
APC	: Antigen presenting cells
ARR	: Annualized relapse rate
ATG	: Anti-thymocyte globulin
AV	: Atrioventricular
BBB	: Blood–brain barrier
BOLD	: Blood-oxygenation-level-dependent
CBC	: Complete blood count
CCSVI	: Chronic cerebrospinal venous insufficiency
CDC	: Centers for Disease Control and Prevention
CDC	: Complement dependent cytotoxicity
CDMS	: Clinically definite MS
cICAM	: Cellular intercellular cell adhesion molecule
CIS	: Clinical isolated syndrome
CLEC16A	
CMV	: Cytomegalovirus
CNS	: Central nervous system
CNTF	: Ciliary neurotrophic factor
CSF	: Cerebrospinal fluid
DIS	: Dissemination in space
DIT	: Dissemination in time
DMDs	: Disease-modifying drugs
DMF	: Dimethylfumarate
DMT	: disease-modifying therapies
DNA	: deoxy ribonucleic acid
EAE	: Experimental autoimmune encephalomyelitis
EBV	: Epstein-Barr virus
EDSS	: Expanded Disability Status Scale
FAE	: Fumaric acid esters

List of Abbreviations (Cont...)

Abbrev.	Full term
fMRI	: Function MRI
	: FTY720 Research Evaluating Effects of Daily
	Oral Therapy in Multiple Sclerosis
GA	: Glatiramer acetate
GFAP	: Glial fibrillary acidic protein
GPC5	: Glypican proteoglycan 5
HACA	: Human anti-chimeric antibodies
HHV-6	: Human herpesvirus-6
HLA	: Human leukocyte antigen
IFN	: Interferon
IFN-β	: Interferon-beta
Ig	: Immunoglobulin
IL	: Interleukin
IL2R	: Interleukin-2 receptor gene
\mathbf{IM}	: Infectious mononucleosis
KIF1b	: Kinesin family member 1b
LFA	: Lymphocyte function-associated antigen
mAb	: Monoclonal antibody
MBP	: Myelin basic protein
MBP-LM	: MBP like material
MHC	: Major histocompatibility complex
miRNAs	: MicroRNAs
MMF	: Metabolite monomethyl fumarate
MMP	: Matrixmetalloproteinase
MOG	: Myelin oligodendrocyte glycoprotein
MRI	: Magnetic resonance imaging
MS	: Multiple sclerosis
MTR	: Magnetization transfer ratio
NAA	: N-acetyl aspartate
NAbs	: Neutralizing antibodies

List of Abbreviations (Cont...)

Abbrev.	Full term
N-CAM	: Neuronal cell adhesion molecule
NF	: Neurofilaments
NO	: Nitric oxide
Nrf-2	: Nuclear factor E2
NSE	: Neuron-specific enolase
OCP	: Oligoclonal bands
OPCs	: Oligodendrocytes precursor cells
PCR	: Polymerase chain reaction
PET	: Positron emission tomography
PLP	: Proteolipid protein
PML	: Progressive multifocal leukoencephalopathy
PP	: Primary progressive
PPMS	: Primary progressive multiple sclerosis
PR-MS	: Progressive-relapsing MS
RA	: Rheumatoid arthritis
RR	: Relapsing-remitting
RTL	: Recombinant T cell receptor ligand
S1PR	: Sphingosine 1-phosphate receptor
sICAM	: Soluble intercellular adhesion molecule
SP-MS	: Secondary-progressive disease course
sVCAM	: Soluble vascular cell adhesion molecule
TGF	: Transforming growth factor
TGF-β	: Transforming growth factor-beta
TMS	: Transcranial magnetic stimulation
TSPO	: Translocator protein 18KDa
TTV	: Torque teno virus
UCCA	: Upper cervical cord area
VCAM-1	: Vascular cell adhesion molecule 1
VLA	: Very late activation antigen
VZV	: Varicella-zoster virus
9-HPT	: Nine-hole peg test

List of Figures

Figure No	v. Eitle Page No.
Figure (1):	Theorazied factors of pathogenesis in MS28
Figure (2):	T cells subpopulation
Figure (3):	T cells differentiation
Figure (4):	Antibody-dependent and -Independent Functions of B cells in Health and Disease 36
Figure (5):	Putative remyelination mechanisms41
Figure (6):	Gain or loss in brain volume, as determined from serial MRI scans using registration-based software, brain volume gain (red) or loss (blue) can be determined with sub-voxel accuracy from serial MRI scans
Figure (7):	Composite image showing information from several sequential MRI scans of a patient with MS
Figure (8):	Areas of increased activation in patients with benign MS compared with healthy controls 51
Figure (9):	Maturation of naïve T lymphocytes (ThO) into T-helper I cells (Th1) or Th2 cels54
Figure (10):	Immunopathogenesis of MS and therapeutic interventions in development
Figure (11):	Betaferon®Pivotal trial in RRMS: effect on annulaized relapse rates
Figure (12):	Glatiramer-acetate-mediated changes on adaptive immune system
Figure (13):	Structure of Mitoxantrone76

List of Figures (Cont...)

Figure No	v. Citle Page N	lo.
Figure (14):	Approximate incidence of PML stratified by previous immune-suppresant use and duration of natalizumab treatment	. 83
Figure (15):	Estimated risk of PML based on anti-JCV antibody status, previous immunosuppressant use, and duration of natalizumab treatment	. 83
Figure (16):	Dimethyl fumarate	.94
Figure (17):	Potential disease modifying mechanisms of action of laquinimod in MS	.98
Figure (18):	Laquinimod: ALLERGO Study	102
Figure (19):	Teriflunomide and TEMSO trial	105
Figure (20):	Proposed Scheme for Risk Stratification of NTZ Treatment	132
Figure (21):	Current algorithm for the management of clinically isolated syndrome at risk and active relapsing–remitting multiple sclerosis	143

List of Tables

Eable V	lo. Eitle Page No.
Table (1):	MS: Immunopathologic subtypes26
Table (2):	McDonald criteria and its modifications43
Table (3):	2010 McDonald Criteria for Diagnosis of MS in Disease with Progression from Onset45
Table (4):	Potential CSF biomarkers related to pathomechanisms in MS
Table (5):	Different formulations of IFN-β70
Table (6):	Clinical features indicative of MS relapse and PML
Table (7):	Precautions with fingolimod use88
Table (8):	Effects of fumaric acid esters on immune and accessory cells
Table (9):	CARE-MS I: Relapse Rate and Patients Free of Relapse by Treatment."107
Table (10):	CARE-MS I: Sustained Accumulation of Disability by Treatment
Table (11):	CARE-MS II: Relapse Rate and Patients Free of Relapse by Treatment."
Table (12):	CARE-MS II: Sustained Accumulation of Disability by Treatment."
Table (13):	Approved therapies in multiple sclerosis123
Table (14):	Novel therapies in multiple sclerosis currently undergoing clinical development125
Table (15):	Promising therapeutic approaches with putative neuroprotective effects in multiple sclerosis

Introduction

Of the central nervous system, which results in the formation of focal demyelinated plaques in the white matter with partial axonal preservation (*Lassmann et al.*, 2007). In most patients disease starts with a relapsing remitting course, which is followed by a secondary progressive phase. In patients with primary progressive disease the relapsing stage of the disease is missed and patients show disease progression from the onset (*Lublin et al.*, 1996).

Multiple sclerosis affects 2.1 million people worldwide and approximately 250 000 to 400 000 people in the United States. Most patients are diagnosed between the ages of 20 and 50 years with women being affected to a greater degree than men by a ratio of 1.6 females to 1 male (*Noonan et al., 2002*). The highest prevalence of multiple sclerosis is found in Caucasian women, persons of Northern European descent, and in those who live in northern latitudes. Multiple sclerosis can cause physical, mental, and emotional disability in individuals, independent of age (*Kobelt et al., 2006*).

The principal target of the disease process in M.S is the myelin sheath and/or the cell responsible for its production and maintenance, the oligodendrocyte. The majorit\y (85%) of M.S patients have a biphasic disease course, beginning with the primary phase termed relapsing remitting M.S (RR-MS).

During this disease course, patients experience alternating episodes of neurological disability and recovery that can last for many years (*Noseworthy*, 1999; Trapp and Nave, 2008). Within 25 years, 90% of RR-MS patients transform into a secondary-progressive disease course (SP-MS) which is characterized by steady neurological decline (Trapp and Nave, 2008). About 10% of M.S patients also exhibit a disease course with steady decline in neurological function without recovery and are classified as primary progressive MS (PPMS). A small minority of MS patients (5%) suffer from a disease course with progressive neurological decline accompanied by well demarcated acute attacks with or without recovery. This disease course is classified as progressive-relapsing MS (PR-MS) (*Prineas*, 2001; Trapp and Nave, 2008).

Typically, MS lesions include breakdown of the blood–brain barrier, multifocal inflammation, demyelination, oligodendrocyte loss, reactive gliosis, and axonal degeneration (*Prineas*, *2001*; *Trapp and Nave*, *2008*). While immunemediated destruction of CNS myelin and oligodendrocytes are considered the primary pathology of MS, it is well established that progressive axonal loss is the major cause of neurological disability in M.S (*Stadelmann et al.*, *2008*).

Being the most common cause of neurological disability in young adults, it represents a prototypic autoimmune inflammatory disorder of the CNS. The mode of action of currently approved disease-modifying drugs (DMDs) for MS is based on

immunomodulation. They include recombinant interferons and glatiramer acetate as first-line treatment, with natalizumab and mitoxantrone as second-line therapies. Several oral drugs for MS are fingolimod, teriflunomide, oral fumarates and laquinimod. Differing in their mode of action and potential adverse events, they have been evaluated in phase III clinical trials, which seem to indicate some promising results (*Kieseier et al.*, 2009).

Aim of the Work

To highlight the recent updates in the pathophysiology of multiple sclerosis and its implication on recent treatments for better management of these patients