Assessment of Cardiotoxicity in Hormone Positive Postmenopausal Breast Cancer Patients Receiving Aromatase Inhibitors

AThesis

Submitted For Partial Fulfilment of Master Degree in Clinical Oncology and Nuclear Medicine

By

Rehab Gamal Shaaban

M.B.B.C.H.

Under Supervision of

Prof. Dr. Eman Aly El- Shaarawy

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Ass. Prof. Dr. Dina Ahmed Salem

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Dr. Reham Mohamed Faheim

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2017

List of Contents

Title	Page No.
List of Tables	i
List of Figures	vi
List of Abbreviations	ix
Introduction	1
Aim of the Work	4
Review of Literature	
Epidemiology and Etiological Factors	5
Clinical Presentation and Diagnostic Workup	15
• Treatment Modalities & Effect on Cardiac Safety	40
 Aromatase Inhibitors in Hormone Positive Menopausal Patients 	
• Cardiotoxicity in Breast Cancer Patients Rece	iving
Aromatase Inhibitors	115
Patients and Methods	143
Results	147
Discussion	190
Summary and Conclusions	206
Recommendations	208
References	210
Arabic Summary	

List of Tables

Table No.	Title P	age No.
Table (1):	BI-RADS Assessment Categories	18
Table (2):	Clinical and pathologic staging of bre cancer according to AJCC 7th edition	
Table (3):	Clinical and pathologic staging of bre cancer according to AJCC 7th edition	
Table (4):	Surrogate definitions of intrinsic subtylof breast cancer	-
Table (5):	Prospective randomized trials compar- conservative surgery and radiation w mastectomy for early-stage breast cancer	ith
Table (6):	Radiation therapy oncolocy group consendefinations for breast cancer radiation theraplanning	ару
Table (7):	Treatment policy for regional nodes	58
Table (8):	Systemic treatment recommendations early breast cancer subtypes	
Table (9):	Review of trials evaluating aduvating trastuzumab with chemotherapy patients with HER2/NEU-postive brecancer	for ast
Table (10):	Summary of cardiac safety w trastuzumab in early breast cancer	ith
Table (11):	Local and systemic treatment in percentage patient in relation to age groups	
Table (12):	The different criteria for identify menopause	_
Table (13):	The major trials of adjuvant A.I.	93

List of Tables (Cont...)

Table No.	Title Pag	je No.
Table (14):	Efficacy of aromatase suppression by three generations of AIs	
Table (15):	Incidence of gynecologic symptoms in patients receiving aromatase inhibitors versus tamoxifen or placebo in randomized phase III trials	s l
Table (16):	Pathophysiology of CV Toxicities observed with breast cancer treatment	
Table (17):	Indirect systemic effects of estrogens	117
Table (18):	Direct effects of estrogens	117
Table (19):	Framingaham Risk Score of cardiac events	125
Table (20):	Criteria for consideration of post anthracycline echocardiography according to National Comprehensive Cancer Network Guidelines	g r
Table (21):	Imaging modalities in the detection of HF.	130
Table (22):	Univariate and logistic models associating electrovar diagram changes to left ventricular systolic dysfunction	t
Table (23):	Classification of blood pressure (BP)	144
Table (24):	Patients and tumor characteristics in study population (no. = 123pts)	
Table (25):	Stage of tumor in study population	149
Table (26):	Pathology and IHC of the tumor in study population	
Table (27):	Received treatment in study nonulation	151

List of Cables (Cont...)

Table No.	Title	Page No.
Table (28):	Pervious and current hormonal treatment study population	
Table (29):	Blood pressure in study population	153
Table (30):	Blood pressure was classified according	g to 153
Table (31):	Lipid profile in study population	155
Table (32):	Evaluation of study population by <i>ECH</i>	O 156
Table (33):	Evaluation of study population (n=12 by <i>ECG</i>	
Table (34):	High risk group in our study:	160
Table (35):	Correlation between measured pressure with patients and to characteristics in study population	umor
Table (36):	Correlation between measured pressure and previously rectreatment in study population	eived
Table (37):	Correlation between measured pressure and current A.I in population	study
Table (38):	Correlation between lipid profile patient and tumor characteristics in population	study
Table (39):	Correlation between lipid profile patient and previously received treat in study population	ment
Table (40):	Correlation between lipid profile current A,I in study population	

List of Tables (Cont...)

Table No.	Title	Page N	0.
Table (41):	Correlation between cardiotoxicity by E with patient and tumor characteristi study population	cs in	71
Table (42):	Correlation between cardiotoxicity ECHO with previously received treat in study population	ment	L 7 3
Table (43):	Correlation between cardiotoxicity ECHO with current A.I in s population	study	L 74
Table (44):	Sub-anylsis for significant correlation between cardiotoxicity in ECHO (n=7) and current treatment with A.I.	71pts)	L 7 6
Table (45):	The presence of ECHO cardiotoxic fine in relation to patient and to characteristics	umor	L 77
Table (46):	The presence of ECHO cardiotoxic fine in relation to previously rectreatment	eived	L 7 9
Table (47):	Logistic regression analysis for correl between between LVD and pre-treatment with Taxans	vious	L 80
Table (48):	The presence of ECHO cardiotoxic fine in relation to current A.I	_	.80
Table (49):	Correlation between cardiotoxicity findings with patient and to characteristics in study population	umor	L 81
Table (50):	Correlation between cardiotoxicity findings with previously received treatments study population	ent in	183

List of Tables (Cont...)

Table No.	Title	Page No.
Table (51):	Correlation between cardiotoxicity findings with current A.I in population	study
Table (52):	Correlation between high risk pa with tumor and patient characterist study population	ics in
Table (53):	Correlation between high risk pa with previously received treatment study population	nt in
Table (54):	Correlation between high risk pa with current A.I in study population	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Most common cancers among wome	en5
Figure (2):	Trends in Incidence Rates for S Cancers by Sex, United States, 2 2013	1975 to
Figure (3):	Calculated age specific incidence rebreast cancer in Egypt 2008–2011	
Figure (4):	Trends in In Situ and Invasive Breast Cancer Incidence Rates by A 1975-2012	ge, US,
Figure (5):	Global breast cancer mortality 2012	213
Figure (6):	Surveillance, Epidemiology, and Results (SEER) Program SEER of cancer	breast
Figure (7):	Overview of multidisciplinary cancer management	
Figure (8):	A hyperdense mass with an ir shape and a speculated margin w focal skin retraction BI-RADS -5	ith the
Figure (9):	Mammography typical microcalcifi	
Figure (10):	Clinical and pathologic staging of cancer according to AJCC 7th edition	
Figure (11):	Relapse free survival according to cancer TNM stage	
Figure (12):	The Decision Tree for Ductal Car	cinoma 45

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (13):	Computed tomography simulation in used to determine arrangement of tabeams in prone breast irradiation	ngent
Figure (14):	Shielding of LAD coronary in by radiotherapy	
Figure (15):	Dose distribution to the breast intensity modulated radiation therap	
Figure (16):	Early breast cancer treatment algorit	thm77
Figure (17):	Female breast cancer treatment patte	erns82
Figure (18):	(Neo) adjuvant systemic treatment cho biomarker expression and intrinsic phen	•
Figure (19):	Mechanism of action of hormonal the	rapy 102
Figure (20):	Metabolic pathways different targeted by aromatase inhibitors (Als	•
Figure (21):	Characteristic ECG changes in systolic dysfunction	
Figure (22):	Distribution of classes of blood pre measured in study population	
Figure (23):	Classification of lipid profile changes	155
Figure (24):	Classes representing cardioto appearing in the ECHO.	
Figure (25):	Classification of study populaccording to ECG findings	
Figure (26):	Percentage of high risk group popula	tion 160
Figure (27):	The relation between lipid profile ch and history of HTN and DM	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (28):	The relation between lipid profile of and history IHD and vascular accide	•
Figure (29):	The correlation between cardio and history of DM and HTN	•
Figure (30):	The relation between types of cuused A.I and number of patient cardiotoxicity in ECHO.	s with
Figure (31):	Correlation between ECG finding history of IHD.	_
Figure (32):	The correlation between high risk and history of HTN.	· -
Figure (33):	The correlation between high risk and history of DM.	
Figure (34):	The correlation between high risk and history of IHD.	
Figure (35):	The correlation between high risk and history of vascular accidents	-

List of Abbreviations

Abb.	Full term
AI	Aromatase inhibitors
	American Joint Committee on Cancer
	Axillary lymph nodes
	Axillary Lymph Nodes
	Accelerated Partial Breast Irradiation
ASTRO	American Society for Radiation Oncology
	Breast Conservative Surgery
	Body Mass Index
<i>CALGB</i>	Cancer and Leukemia Group B
	Cancer Statistics Review
DCIS	Ductal Carcinoma in Situ
DIBH	Deep Inspiration Breath-Hold
E2	Estradiol
<i>ER</i>	Estrogen Receptor
ET	Endocraine Therapy
EUSOMA	European Society of Breast Cancer Specialists
FDG-PET	Fluorodeoxyglucose Positron Emission
	Tomography
FNA	Fine Needle Aspiration
<i>GnRH</i>	Gonadotropin-Releasing Hormone
<i>HBOC</i>	Hereditary Breast Ovarian Cancer
HER2	Human Epidermal Growth Factor Receptor 2
HR	Hormone Receptor
<i>IBTR</i>	Ipsilateral Breast Tumor Recurrence
<i>IBTR</i>	Ipsilateral Breast Tumor Recurrence
<i>IDC</i>	infiltrating Ductal Carcinoma
<i>IHC</i>	Immun ohistochemistry
<i>ILC</i>	Infiltrating Lobular Carcinoma
<i>IMRT</i>	Intensity-Modulated Radiation Therapy

List of Abbreviations (Cont...)

Abb.	Full term
ITA	Italian Tamoxifen Anastrozole
	Left Anterior Descending
	Lobular Carcinoma in Situ
	Luteinizing-Hormone-Releasing Hormone
	Left Ventricular
<i>M</i>	
	.Metastatic Breast Cancer
	Multi-Leaf Collimator
	Nodal Involvement
	National Cancer Registry Program
<i>OS</i>	Overall Survival
OS	Overall Survival
PFS	Progression-Free Survival
PFS	Progression-Free Survival
<i>PMRT</i>	Post-Mastectomy Radiation
PR	Progesterone
PR	Progesterone Receptor
RS	Recurrence Score
SERMs	Selective Estrogen Receptor Modulators
	Society of Geriatric Oncology
<i>SLN</i>	.Sentinel Lymph Node
SREs	.Skeletal-Related Events
T	Tumor Size
TG	Triglyceride
TLI	Thymidine Labeling Index
WBI	.Whole Breast Irradiation

ABSTRACT

Major studies shown a significant DFS and OS advantage for different schedules of A.I treatment, including upfront AIs or sequential use of tamoxifen and AIs, have been shown to improve disease-free survival and overall survival compared with tamoxifen alone. The benefit of AIs on breast cancer recurrence and mortality far outweigh the risks of adverse events, and this should be taken into account when considering treatment options for patients. Nevertheless, cardiovascular events reported in clinical trials with AIs raise potential concerns that suggest the need for additional follow-up and studies.

Our cross sectional study that assessed cardiotoxicity for adjuvant and metastatic breast cancer patients at Ain-Shams university clinical oncology department in the interval from August 2016 to June 2017, a total of 123 hormone receptor positive postmenopausal women were treated with Aromatase Inhibitors (AIs) showed evidence of cardiotoxicity by ECHO in 71 patients (57.7% of study population) (P value=0.016). However, it was not detected by blood pressure measurement, lipid profile, ECG. So, ECHO represents an important tool for screening cardiotoxicity that seems to be associated with use of A.I in postmenopausal patients. With the goal of early detection of cancer treatment–related cardiac toxicity, leading to early treatment that results in better survival outcomes.

Keywords: Selective Estrogen Receptor Modulators - Recurrence Score - Post-Mastectomy Radiation

Introduction

reast cancer is the leading cause of death among women, and its incidence is increasing with age. The average age at diagnosis is 61 years, and most of deaths occurs beyond the age of 65 years. The best approach to elderly women with breast cancer is still a big challenge. Those patients should have at least a brief general assessment to detect treatable problems, which are not adequately evaluated by the oncologists. The most effective treatment should be provided, unless there are explained reasons against it (Tesarova, 2016).

Breast cancer is considered the second most common cancer overall (1.7 million cases, 11.9%). In females, breast cancer is the most common cancer diagnosed in more and less developed regions, with more cases occurring in less developed (883, 000 cases) than more developed regions (794, 000) (Erlay et al., 2012).

In Egypt, breast cancer is the most common type of cancer which counts for 38.8% of all cancers in women (Ibrahim et al., 2014).

High endogenous estrogen levels increase the risk of breast (particularly cancer hormone receptor-positive) premenopausal and postmenopausal women. In postmenopausal women, the correlation between an increased risk for breast cancer and increased hormone levels (eg: estradiol, estrone) has been fairly consistent (*Farhat et al.*, 2011).

In postmenopausal women, most breast cancers are hormone receptor positive. So, endocrine therapies designed to prevent estrogen driven proliferation, could induce tumor regression (*Darby et al.*, 2005).

Aromatase inhibitors (AI) are used in adjuvant treatment for post-menopausal women with hormone receptor positive breast cancer to reduce the risk of recurrence, and in the metastatic cases to improve overall survival (*Prince et al.*, 2016).

Breast cancer is commonly diagnosed in postmenopausal women who are liable to have 1 or more cardiovascular disease which has a significant competing risk for morbidity and mortality among non-metastatic breast cancer survivors. After treatment completion, adjuvant systemic therapies may result in late-cardiac toxicity after decades. After some adjuvant breast cancer therapies the cumulative incidence of treatment-related cardiotoxic outcomes may be as high as 33%. Treatment-induced cardiotoxicity may manifest as cardiomyopathy, arrhythmias, coronary ischemia, thromboembolism, conduction abnormalities, valvular and pericardial disease (Kathryn et al., 2012).