

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

STRUCTURAL EFFICIENCY OF PRESTRESSING FOR CONCRETE BRIDGES IN ULTIMATE STAGE

BY

MAGED AHMED ABD EL-MAKSOUD HASHAD B.Sc. year 2011

STRUCTURAL DIVISION
CIVIL ENGINEERING DEPARTMENT
FACULTY OF ENGINEERING - AIN SHAMS UNIVERSITY

A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE MASTER OF SCIENCE DEGREE IN CIVIL ENGINEERING (STRUCTURAL)

SUPERVISED BY

Prof. Dr. Fathy Saad
Professor at the Structural
Eng. Department,
Ain shams University.

Dr. Khaled Hilal RiadAssociate Professor at the Structural Eng. Department, Ain shams University.

October-2015 Cairo - Egypt

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt on December 2015 for the Master of science Degree in Civil Engineering (Structural).

The work included in this thesis was carried out by author in the Department of Structural Engineering, faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at any other university or institute.

Date: /12/2015

Name: Maged Ahmed Abd El-Maksoud Hashad

Signature: Maged Hashad

AUTHOR

Name: Maged Ahmed Abd El-Maksoud Hashad

Date of birth: 17/7/1989

Place of birth: Egypt

Academic Degree: B.Sc. in Structural Engineering

University: Ain Shams University.

Date: July 2011

ACKNOWLEDGEMENTS

First words and foremost thanks to **Allah**, the most beneficent and merciful.

I will never be able to express my sincere appreciation and deepest thanks and gratitude to Professor Dr. Fathy Saad for his continuous guidance, supervision, valuable suggestions, encouragement and understanding throughout the research period and preparation of the thesis.

My appreciation and thanks are due Dr. Khaled Hilal who offered direct assistance throughout the duration of research.

No words can express my thanks to my parents, whom I will never appreciate their rights whatever I do.

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CIVIL ENG. DEPARTMENT STRUTURAL DIVISION

Abstract of Master of Science Degree Thesis Submitted By

Eng. MAGED AHMED ABD EL-MAKSOUD HASHAD

Title of thesis:-

STRUCTURAL EFFICIENCY OF PRESTRESSING FOR CONCRETE BRIDGES IN ULTIMATE STAGE

Supervisors:-

Prof. Dr. Fathy Saad Professor at Structural Eng. Dept.

Dr. Khaled Hilal Riad Associate Professor at Structural Eng. Dept.

ABSTRACT

The main objective of this study is to present the effect of prestressing force and induced prestressing moment on the ultimate moment capacity for the structurally determinate and indeterminate prestressed beams.

An analytical study was carried out for 33 structurally determinate internally bonded prestressed beams and 21 structurally determinate unbonded prestressed beams with different concrete compressive strength and different reinforcement ratios to determine the ultimate moment capacity.

A numerical study included non linear finite element modeling using "Tno-Diana" software was used to solve 5 statically determinate prestressed beams, which were previously tested experimentally. These models were used as a calibration models for the program also 60 statically indeterminate prestressed beams were solved using "Tno-Diana" program and ultimate moment capacity, ultimate deflection, ultimate concrete strain, ultimate prestressing steel strain and load deflection curves were determined.

This study introduces the conceptual design of prestressed beams at ultimate limit state. Proposed calculation method was introduced. Analytical studies were carried out to investigate the ultimate capacity of prestressed beams also non linear finite element models were developed.

v

The following conclusions can be drawn:-

- An ultimate strength analysis involving equilibrium and strain compatibility
 equations and prestressing normal force permitted satisfactory prediction of
 the effects of all important variables on flexural strength compared with
 experimental results for bonded and unbonded specimens.
- The increase in ultimate moment capacity due to the effect of normal force increases linearly with the reinforcement ratio (ρ) and becomes significant for high prestressing ratios > 0.5 %.
- Taking the effect of the normal force in the ultimate limit flexural capacity calculations gave closer results to the experimental capacity values (average and STD).
- The ultimate capacity of the beams increased by a ratio an average ratio 9.2% compared to ACI results by taking the effect of normal force into consideration.
- The use of non linear analysis FEM software to model and analyze the behavior of prestressed concrete beams in the non linear range become useful and efficient design tool to determine the ultimate moment capacity.
- The non linear analysis leads to substantially similar results to the experimental results over a wide range of variations of prestressing ratios and concrete compressive strength.
- From a practical viewpoint, the cost of a more accurate method of analysis may be largely offset by the savings on the amount of steel used.

TABLE OF CONTENTS

Chapter 1	1
Introduction	1
1.1 General	1
1.2 Objective of the Present Investigation	1
1.3 Outline of The Thesis	1
Chapter 2	3
Literature Review	3
2.1 Introduction	3
2.2 Flexure and Axial Force.	6
2.3 The Nature of Prestress Parasitic Moments	8
2.3.1 Parasitic Moments at the ULS	12
2.4 The Assumptions Used Defining the Behavior of the Section at Ultimate Load	13
2.5 Strain Limits Method for Analysis and Design	14
2.5.1 General Principles	14
2.6 Nominal Moment Strength of Rectangular Sections	16
2.6.1 Nominal Moment Strength of Flanged Sections	19
2.6.2 Determination of Prestressing Steel Nominal Failure Stress f_{ps}	21
2.6.3 Limit State in Flexure at Ultimate Load in Unbonded Tendons	24
2.7 Determination of the Centre of Gravity of Cracked Prestressed Sections	25
2.8 Preliminary Ultimate-Load Design	27
2.9 Determination of Ultimate Capacity of Prestressed Sections According To Eurocode.	29
2.10 Comparison Between Different Authors and Design Codes View Points Regarding Ultimate Capacity of Prestressed Members.	31
Chapter 3	33
Proposal for Prediction of Ultimate Moment Capacity	33
For Structurally Determinate and Indeterminate Prestressed Beams	33
3.1 Introduction	33
3.2 Proposal for Statically determinate Beams	34

3.2.1 Stress-Strain Relation as Derived from Compatibility and Equilibrium and ACI Equations	
3.2.2 Stress-Strain Relation as Derived from Compatibility and Equilibrium and Eurocode equations	
3.3 Proposal for Statically Indeterminate Beams	0
3.4 Sample calculation for the proposed approximate method	2
3.4.1 Evaluation of Flexural Strength of Box Girder According To ACI 4	2
3.4.2 Evaluation of flexural strength of box girder with the effect of prestressing normal force and ACI equations	_
3.4.3 Evaluation of flexural strength of box girder according to Eurocode equations. 4	6
3.4.4 Evaluation of flexural strength of box girder with the effect of prestressing normal force and Eurocode equations	
Chapter 45	1
Verification of the Proposed Calculation Procedure Using Available Experimental Test Data	
4.1Introduction	1
4.2. Determinate Prestressed Bonded High Strength Concrete Beams (Group 1 Beams)	1
4.2.2. Experimental Results	3
4.2.3 Ultimate Flexural Capacity of (G1) Beams by ACI5	3
4.2.4 Ultimate Flexural Capacity of (G1) Beams by The Proposed Method 5	9
4.2.5 Comparison between The ACI and The Proposed Method Results For Calculating The Ultimate Capacity of The Tested Beams	9
4.2.6 Conclusion for Group 1 Beams5	9
4.3 Determinate Prestressed Bonded High Strength Concrete (Group 2 Beams) 6	0
4.3.3 Experimental Results	2
4.3.4 Ultimate Flexural Capacity of (G2) Beams by ACI	2
4.3.5 Ultimate Flexural Capacity of (G2) Beams by The Proposed Method 6	6
4.3.6 Comparison between the ACI and the proposed method for calculating the ultimate capacity of the tested beams	
4.3.7 Conclusion for Group 2 Beams	6

,	4.4. Effect of Reinforcement Ratio ρ on The Increase In Ultimate Strength Due The Prestressing Normal Force Effect for Bonded Prestressed High Strength Concrete Beams (Groups 1&2)	
]	4.5. Effect of ρ/f_c ' Ratio on The Increase In Ultimate Strength Due To The Prestressing Normal Force Effect For Bonded Prestressed High Strength Concre Beams (Groups 1&2)	
	4.6. Determinate Prestressed Bonded Normal Strength Concrete Beams (Group 3 Beams)	
	4.6.2. Test Set-Up and Loading Procedure	. 68
	4.6.3 Ultimate Flexural Capacity of (G3) Beams by ACI	. 71
	4.6.4 Ultimate Capacity of (G3) Beams by the Proposed Method	. 72
	4.6.5 Comparison between ACI and the Proposed Method for Calculating the Ultimate Capacity of the Tested Beams	
	4.6.6 Effect of Reinforcement Ratio (ρ) on the Increase In Ultimate Strength I To the Prestressing Normal Force Effect for Bonded Prestressed Normal Strength Concrete Beams (Group 3)	
	4.6.7 Effect of ρ/f_c ' On The Increase In Ultimate Stress Due To The Prestressi Normal Force Effect For Bonded Prestressed Normal Strength Concrete Groundscames	p 3
	4.7. Flexural Strength of Unbonded Prestressed Concrete Beams with Tendon Wrapped By Plastic Sheets (Group 4 Beams)	. 93
	4.7.1 Introduction	. 93
	4.7.2. Specimens details & Materials	. 96
	4.7.3. Test Setup and Loading Procedure	. 96
	4.7.4. Results and Discussion	. 99
	4.7.5 Conclusion for group 4 beams	101
	4.8. Flexural Strength of Unbonded Prestressed Normal and High Strength Concrete Beams (Group 5 Beams)	101
	4.8.1 Specimen Detail	101
Ch	apter 5	104
Mo	odeling of Prestressed Beams Using Non Linear	104
Fir	nite Element Method in Ultimate Stage	104
	5.1 Introduction	104

5.2 Model Procedure	104
5.2.1 Layout Definition	104
5.2.2 Cross Sections Definition	105
5.2.3 Concrete Beam Finite Element Model	105
5.2.4 Prestressing Reinforcement Profile	106
5.2.5 Supports	107
5.2.6 Loading	107
5.3 Material Properties	108
5.3.1 Prestressing Reinforcement	109
5.3.2 Concrete	110
5.4 Analysis Procedure	116
5.4.1 Convergence Limit of Solution	117
5.4.2 Load Stepping and Failure Definition for FE Models	118
5.5 Results	119
Chapter 6	120
Non Linear Analysis of Statically Indeterminate	120
Prestressed Beams Using FEM	120
6.1 Introduction	120
6.2 Description of Post-Tensioned Specimens for Group 1 Beams	120
6.3 Modelling	121
6.4 Load	122
6.5 Results	122
-Beam OB14.066	123
-Beam OB14.175	127
-Beam OB 24.168	131
-Beam OB.34.071	135
-Beam OB.34.120	139
6.6 Comparison between the FEM and Proposed Method Results	142
6.7 Description of Group 2 Indeterminate Prestressed Beams.	144
6.7 Group 2 Beams Non Linear Results	147

6.7.1 Ultimate Moment Capacity for Prestressed Beams	150
6.7.2 Ultimate Moment Capacity for Non-Prestressed Beams	151
6.8 Conclusion for Group 2 Beams	153
Chapter 7	154
Conclusion& Recommendations	154
7.1 Summary	154
7.2 Introducing a Safety Model for the Ultimate Limit State of Prestressed Concrete Bridges Sections	154
7.2.1 Proposal for Statically determinate Beams	154
7.2.2 Proposal for Statically Indeterminate Beams	155
7.3 Conclusions	156
7.4 Future Work	156
Notations	158
References	160

LIST OF FIGURES

Fig. 2.1: Strain in the concrete up to the decompression stage at the tension reinforcement level
Fig. 2.2: Load-deformation curve of typical prestressed beam
Fig. 2.3: Stress and strain distribution across beam depth
Fig. 2.4: Ultimate state of strain in flexure
Fig. 2.5: Ultimate state of strain for flexure+axial force
Fig. 2.6: M-N interaction diagrams (Christian Menn 1998)
Fig. 2.7: The principle of parasitic moments
Fig. 2.8: Strain limit zones and variation of strength reduction factor Φ with the net Tensile Strain
Fig. 2.9: Strain, stress, and forces across beam depth of rectangular section 18
Fig. 2.10: Strain, stress, and forces in flanged sections
Fig. 2.11: Basis for analysis of cracked cross section
Fig. 2.12: Typical stress-strain relationship of 7-wire 270-K prestressing strand28
Fig. 2.13: Stress-strain diagrams for reinforcement
Figure 2.14: Idealised and design stress-strain diagrams for prestressing steel29
Fig. 2.15: Parabola-rectangle diagram for concrete under compression (Eurocode 2004)
Fig. 2.16: Rectangular stress distribution
Fig. 3.1: Possible strain distributions in the ultimate limit state in case of adding the prestressing normal force to the ACI strain comptability equations
Fig. 3.2: Possible strain distributions in the ultimate limit state in case of adding the prestressing normal force to the Eurocode strain computability equations

Fig. 3.3: Parabola-rectangle diagram for concrete under compression 3
Fig. 3.4: Rectangular stress distribution
Fig 3.5: flow chart of steps
Fig 3.6: Excel sheet calculating the ultimate moment capacity of prestressed member taking into consideration prestressing normal force
Fig. 3.7a: Assumed forces and strains at ultimate stage of prestressed box 4
girder section according to ACI
Fig. 3.7b: Assumed forces and strains at ultimate stage of prestressed box 4
girder section according to ACI+Normal force
Fig. 3.7c: Assumed forces and strains at ultimate stage of prestressed box 4
girder section according to Eurocode
Fig. 3.7d: Assumed forces and strains at ultimate stage of prestressed box
girder section according to Eurocode+Normal force
Fig. 4.1: Specimen's typical reinforcement details
Fig. 4.2: Instrumentation used to monitor the behavior during testing 5
Fig. 4.3: Test setup
Fig. 4.5: (G2) Beams concrete dimensions and cable profile of prestressed beams 6
Fig. 4.6: (G2) Beams reinforcement details of fully prestressed beams 6
Fig. 4.7: The prestressing strand placed inside the polyethylene duct
Fig. 4.8: The calculated and measured prestressing stress along the beam span for Partially prestressed beam with compressive strength 72 MPa
Fig. 4.9: Effect of ρ on the increase in ultimate strength due to the prestressing normal force effect concrete for beams (groups 1&2)
Fig. 4.10: Effect of ρ/f_c ' ratio on the increase in ultimate strength due to the prestressing normal force effect for beams (groups 1&2)

Fig. 4.11: Details of post-tensioned beams	69
Fig. 4.12: Stress strain relationship for prestressing reinforcement	69
Fig. 4.13: Effect of ρ on the increase in ultimate strength due to the prestressing normal force effect for group 3 beams	92
Fig. 4.14: Effect of ρ/f_c ' on the increase in ultimate strength due to the prestressing normal force effect for group 3 beams	
Fig. 4.15: Sections of specimens	98
Fig. 4.16: Layout of strain gauges and micrometer	98
Fig. 4.17: Set-up of beams under testing	98
Fig. 5.1: Dimensions of beam with supports and loading	105
Fig. 5.2: Beam meshing plan	106
Fig. 5.3: Prestressing cable profile.	107
Fig. 5.4: Beam supports plan.	107
Fig. 5.5: Distributed load on the concrete beam	108
Fig. 5.6: Adding the normal force on the presstressing cable	108
Fig. 5.7: Stress-strain curve for grade 270, low relaxation strand (ACI)	110
Fig.5.8: Typical Uniaxial Compressive and Tensile Stress-Strain Curve For conc	
Fig. 5.9: Uniaxial Stress-Strain Curve	114
Fig. 5.10: 2-d failure surface for concrete	115
Fig. 5.11: Newton-Raphson nonlinear process using the incremental process	118
Fig. 5.12: Load displacement diagram	115
Fig 6.1: Longitudinal beam model	121
Fig 6.2: Straight cable profile model	121
Fig 6.3: Loading of the beams.	122

Fig. 6.4: Beam OB14.066 prestressing steel stress before loading the beam	123
Fig. 6.5: Beam OB14.066 Prestressing steel stress at ultimate stage	123
Fig. 6.6: Beam OB14.066 Prestressing steel strain at ultimate stage	124
Fig. 6.7: Beam OB14.066 concrete strain at ultimate stage	124
Fig. 6.8: Beam OB14.066 beam ultimate deflection shape	125
Fig. 6.9: Beam OB14.066 ultimate moment capacity	125
Fig. 6.10: Load deflection curve for beam OB.14.066	126
Fig. 6.11: Beam OB14.175 prestressing steel stress before loading the beam	127
Fig. 6.12: Beam OB14.175 prestressing steel stress at ultimate stage	127
Fig. 6.13: Beam OB14.175 prestressing steel strain at ultimate stage	128
Fig. 6.14: Beam OB14.175 concrete strain at ultimate stage	128
Fig. 6.15: Beam OB14.175 ultimate deflection shape	129
Fig. 6.16: Beam OB14.175 ultimate moment capacity	129
Fig.6.17: Load deflection curve for beam OB.14.175	130
Fig. 6.18: Beam OB 24.168 prestressing steel stress before loading the beam	131
Fig. 6.19: Beam OB 24.168 prestressing steel stress at ultimate stage	131
Fig. 6.20: Beam OB 24.168 prestressing steel strain at ultimate stage	132
Fig. 6.21: Beam OB 24.168 concrete strain at ultimate stage	132
Fig. 6.22: Beam OB 24.168 ultimate deflection shape	133
Fig. 6.23: Beam OB 24.168 ultimate moment capacity	133
Fig. 6.24: Load deflection curve for beam OB.24.168	134
Fig. 6.25: Beam OB.34.071 prestressing steel stress before loading the beam	135
Fig. 6.26: Beam OB.34.071 prestressing steel stress at ultimate stage	135
Fig. 6.27: Beam OB.34.071 prestressing steel strain at ultimate stage	136