Comparative Study between Arthroscopic Bankart Repair and Latarjet Procedure in High Demands Patients with Recurrent Anterior Shoulder Dislocation

A Thesis Submitted for partial fulfillment of MD degree in Orthopaedic Surgery

BY

Yahia Mohamed Abdelmawgoud Mohamed Haroon M.B.B.Ch., M. Sc. (Orthopaedic Surgery)

Under Supervision Of

Prof. Dr. Amr Mohamed Abdelhady Sharaf

Professor of Orthopaedic Surgery Faculty of Medicine –Ain Shams University

Prof. Dr. Mohamed Hassan Sobhy Ahmed

Assistant Professor of Orthopaedic Surgery Faculty of Medicine –Ain Shams University

Dr. Ahmed Hany Ahmed Safy El Din Khater

Lecturer of Orthopaedic Surgery Faculty of Medicine –Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Acknowledgement

At first, thanks to ALLAH for all his gifts.

Words stand short when they come to express my gratefulness to my supervisors.

I would like to express my deep gratitude and appreciation to **PROF**.

**DR. \ Amr Abelhady for his great supervision, great help, available advice and continuous encouragement. Without his support it would have been impossible for this study to be achieved in this form. I had the privilege to benefit from his great knowledge and morals, it is an honor to work under his guidance and supervision.

I also sincerely express my great appreciation to

PROF. DR. \ **Mohamed Sobhy** for his advice, valuable guidance and all efforts he offered to make this work possible.

I also sincerely express my great appreciation to

Dr.\ Ahmed Hany for his sincere and valuable guidance and encouragement always been available to advise me.

I dedicate this work to my family whom without their sincere emotional support this work could not have been completed.

CONTENTS

Subject	Page No.
Contents	I
List of Tables	ii
List of Figures	iii
List of Abbreviations	viii
Introduction	1
Aim of the Work	3
Review of literature	4
Patients & Methods	88
Results	112
Discussion	131
Case presentation	146
Summary and Conclusion	164
References	166
الملخص العربي	1

LIST OF TABLES

Table No.	Title	Pag	ge No.
Table (1): Beighton score			44
Table (2): Advantages ar	nd disadvantages of dia	meter-based method	
and surface are	ea method		64
Table (3): Conversions	between percentage lo	ss of glenoid width	
and percentage	e loss of glenoid surface	e area	64
Table (4): Grading S	ystems for Humeral	Head Bone Loss	
	th Hill-Sachs Lesions		
Table (5): Instability seve			
Table (6): The pre-operat	ive ROM of the Bankar	rt group	114
Table (7): The pre-operat			115
Table (8): The pre-operat	ive Rowe score of the p	patients shared in the	
Table (9): The mean open			
Table (10): The post-ope		•	
Table (11): The post-oper			
Table (12): The post-oper			119
Table (13): Comparison			
			148
Table (14): Comparison	of pre-operative and p	post-operative Rowe	
score			148
Table (15): Comparison		•	
			153
Table (16): Comparison	of pre-operative and p	post-operative Rowe	
			153
Table (17): Comparison			
			158
Table (18): Comparison	of pre-operative and p		
score			158
Table (19): Comparison	of pre-operative, post-o	perative and normal	
side ROM			163
Table (20): Comparison			
score			163

LIST OF FIGURES

Figure N	o. Title	Page No.
Figure (1):	Arthroscopic image from a posterior viewing	g portal
	demonstrating the biceps tendon sling. B,	
	tendon; H, humeral head.	
Figure (2):	(a) En-face view of a right cadaveric glenoid s	showing
	bare spot (large *), (b) En-face view of	_
	cadaveric glenoid showing anterior to p	
	distance (solid arrow) and superior to inferior	
	(dotted arrow)	
Figure (3)	: Attachments of the left coracoid process	
	coracoacromial ligament, CP coracoid process.	
Figure (4):	: Medial and inferior relations of coracoid	-
	Anterior view, pectoralis major removed,	
	deltoid retracted laterally. a musculocutaneous	
	pectoralis minor; c tip of coracoid pro-	
	coracobrachialis; e short head of biceps; f cla	
E: (5)	lateral pectoral nerve	
Figure (5):	superior relations to coracoid process: AC joint	
	divided and clavicle rotated anteriorly, a acro	
	coracoacromial ligament; c lateral clavicle; d tr ligament; e conoid ligament; f transverse	_
	ligament	
Figure (6):	The safety margin of the coracoid process (2.6 c	
rigure (0).	two 3.5-mm screws.	
Figure (7).	arthroscopic view of superior labrum	
	SGHL within the rotator interval	
	: Arthroscopic image of the middle gleno	
g (>)	ligament. Patient is in the lateral position	
Figure (10)	: Diagram of the inferior glenohumeral ligament	
8 ()	parts; (1) posterior band, (2) axillary pouch	
	anterior band	, ,
Figure (11)	: Anterior inferior glenohumeral ligament under	
9 , ,	by external rotation	
Figure (12)	: normal labroligamentous variant (a) cord like	MGHL
· , ,	present in a Buford complex. (b) An anterior	
	sublabral foramen. SS Subscapularis tende	
	Glenoid	22

Figure (14): Bankart lesion
labral periosteal sleeve avulsion (ALPSA lesion)
visualized from the anterosuperior portal
Figure (16): GLAD lesion. The GLAD lesion is disruption of
articular cartilage from the anterior inferior glenoid
surface: (a) flap tear(b) cartilage loss28
Figure (17): HAGL lesion
Figure (18): Illustration of the glenoid track. (A) This schematic
drawing shows the margins of the contact area at 0
(triangles), 30degrees (squares), and 60degrees
(circles) of abduction. (B) Location of the glenoid
track. The medial margin of the glenoid track is located
at a distance equivalent to 84% of the glenoid width
from the footprint of the rotator cuff (dotted line)34
Figure (19): Glenohumeral joint in abduction and external rotation.
e · · ·
If the Hill Sachs lesion (HS) is within the medial
margin of the glenoid track (G-T), there is still glenoid
track support for bone stability (on-track Hill-Sachs
lesion)
Figure (20): Glenohumeral joint in abduction and external rotation
in shoulder with bipolar bone loss. The Hill-Sachs
lesion extends medial to the medial margin of the
glenoid track (G-T), with loss of bone support at the
anterior glenoid rim (off-track Hill-Sachs lesion)36
Figure (21): Anterior Drawer test
Figure (22): Sulcus sign with arm at side
Figure (23): (A) Gagey hyperabduction test. (B) Gagey
hyperabduction test (normal side). (C) Gagey
hyperabduction test (pathological side)46
Figure (24): Anterior apprehension in abduction and external
rotation48
Figure (25): (A) Jobe's Apprehension-Relocation test. (B) Jobe's
Apprehension- Relocation test and provocative test
while pushing on the humerus from posterior to
anterior49
Figure (26): (A) Technical realization of AP in different shoulder
rotations. (B) AP view with humeral head in internal

	rotation showing the Hill- Sachs defect in anterior
	instability. (C)AP view with humeral head in internal
	rotation showing the anterior humeral defect in
	posterior instability54
Figure (27) :	: (A) Bernageau view technical realization. (B, C)
0 , ,	Bernageau view assesses the anterior part of the
	glenoid rim
Figure (28)	: (A) Bernageau view of the normal shoulder. (B)
	Bernageau view show visible osseous fracture
	fragment in comparison to the contralateral Bernageau
	view55
Figure (29):	(A) CT scan image show Hill- Sachs defect. (B) CT
	scan image show anterior glenoid defect55
Figure (30):	Calculation of anterior glenoid bone loss using Surface
	area method60
Figure (31):	Calculation of anterior glenoid bone loss using AP
	distance from bare area method60
Figure (32):	Calculation of anterior glenoid bone loss using the ratio
	method61
Figure (33):	Calculation of anterior glenoid bone loss using Pico
	method. 62
Figure (34):	Importance of Bankart fragment length62
Figure (35):	The glenoid-bare-spot method for estimation of the
	osseous defect size. A: With use of the bare spot as a
	reference point, the distance from the glenoid bare spot
	to the posterior glenoid rim (BC) is measured. B: After
	the probe is advanced, the distance from the bare spot
	to the anterior rim (AB) is measured. The percent bone
	loss is calculated according to the indicated equation 63
Figure (36):	Radiographs of an anteroposterior view of the shoulder
	with measures of the head Radius (R) by means of a
	transparent gauge and measures of notch Depth (D) ⁽⁶⁸⁾ 67
Figure (37):	Hall grading for Hill -Sachs lesions. Bone loss is
	measured as a percent involvement in the 180 degree
	articular arc of Humeral head (X/Y \times 100). In this
	example percent involvement of the articular arc would
E! (30)	be 32° /180° x 100 = 17.8% 69
Figure (38):	A Hill-Sachs lesion classified as moderate using Rowe
	grading

Figure (39): Richards grading. A concentric circle is transpose	d
onto the humeral head with the midpoint occurring	at
the intersection of the lines. Hill-Sachs lesions at	
defined by specific locations about the 360 degree axis	
Figure (40): Preoperative double contrast CT arthrography.	ı:
Percentage of articular surface involvement; d: Dept	
of the Hill-Sachs lesion; s: Size of the Hill-Sach	
lesion.	
Figure (41): Measurement of inferior glenoid diameter (D) and	
anterior glenoid (d) by 3D CT and arthroscopy	
Figure (42): Calculating the Hill-Sachs interval (HSI), Hill-Sach	
width (HS) and bone bridge (BB), using 3D CT or	
4mm. tip probe.	
Figure (43): Anteroposterior (a) and lateral (b) X-Ray views of	
Latarjet procedure	81
Figure (44): Postoperative computed tomography axial view of a	
arthroscopic Latarjet. The graft is positioned flush wit	
the joint surface	
Figure (45): Intraoperative view of an arthroscopic Latarjet.	
subscapularis, hh humeral head, cp coracoid process,	
conjoined tendon Figure (46): Treatment algorithm of bony anterior shoulded	
stability. First determination of the size of the defect	
done, followed by evaluation of specific risk factor	
For large glenoid defects the Latarjet procedure	
preferred, while Hill-Sachs defects the remplissage	
recommended procedure	
Figure (47): Algorithm of surgical treatment in recurrent anterior	
instability	
Figure (48): Beach chair position.	
Figure (49): Arthroscopic picture of right shoulder using posterio	
visualizing portal showing anterior-inferior portal	
placement using outside in technique	
Figure (50): steps of Bankart repair (A) liberation, (b) application of	
anchor with sleeve (c) Bankart repair threaded ancho	r
in place (d) A suture passer (e) fiber wire passe	d
through labrum.	104
Figure (51): Beach chair position	
Figure (52): Arm is draped free	105

Figure	(53):	Mark for skin incision	106
		The conjoint tendon	
Figure	(55):	A microsagittal saw is used to osteotomize the base of	
		the coracoid	
Figure	(56):	Coracoid graft freely mobile	108
Figure	(57):	Decortication of the under surface of coracoid	108
Figure	(58):	The occupation of the patients shared in the study	113
		The mode of dislocation	
Figure	(60) :	The mean operative time difference	122
		The overall return to work/sport operative	
Figure	(62):	The return to work difference	123
Figure	(63):	The mean time to return to work/sport difference	124
		The Rowe score difference.	
		The mean forward flexion difference	
		The mean external rotation at side difference	
0	` ′	The mean external rotation at 90° abduction difference.	
_		The mean internal rotation at 90° abduction difference.	
		Pre- operative PXR and MRI.	
		Pre- operative Enface and axial views.	
_		Pre- operative bone loss measurements.	
		postoperative PXR.	
		Shoulder ROM at final follow- up	
		Pre-operative MRI and PXR.	
		Preoperative CT Enface view and axial cuts	
		preoperative bone loss measurements	
_		Post- operative X-ray.	
		ROM at final follow- up.	
		Pre- operative PXR and MRI.	
		Pre- operative Enface and axial view	
_		Preoperative bone loss measurements	
_		Post- operative X-ray.	
		ROM at final follow- up	
		Pre- operative PXR and MRI.	
_		Pre- operative Enface and axial view	
_		Preoperative bone loss measurements	
_		Post- operative X-ray.	
Figure	(88):	ROM at final follow- up	163

LIST OF ABBREVIATIONS

ALPSA : anterior labro-periosteal sleeve avulsion

AP : Anteroposterior

ASES : american shoulder and elbow surgeons

ASORS : athletic shoulder outcome rating scale

BHAGL . bony humeral avulsion of the glenohumeral

ligament lesion

CAL : coracoacromial ligament

CHL : coracohumeral ligament

CM : constant-murley

CRPS : complex regional pain syndrome

CT : computed tomography

DASH : disabilities of the arm, shoulder and hand

GLAD : gleno-labral articular disruption

HAGL . humeral avulsion of the glenohumeral ligament

lesion

HS: hill sachs

IGHL : inferior glenohumeral ligament

IGHLC: inferior glenohumeral ligamentous complex

ISIS: intability severity index score

MGHL : middle glenohumeral ligament

MISS : melbourne instability shoulder score

MRA : magnetic resonance arthrography

MRI : magnetic resonance imaging

OA : osteoarthritis

OIS : oxford instability score

PXR : Plain X ray

RCT : rotator cuff tear

RI : rotator interval

ROM : range of motion

SGHL : superior glenohumeral ligament

SLAP : superior labral tear from anterior to posterior

SRQ : shoulder rating questionnaire

SST : simple shoulder test

UCLA : university of California Los anglos

WOSI : western Ontario shoulder instability index

Introduction

Glenohumeral joint dislocation is the most common dislocation seen in human body and accounts for about 50% of all joint dislocations. Anterior shoulder dislocation constitutes 95% of all shoulder dislocations^(1, 2). Anterior shoulder dislocation is a common problem in high demands patients⁽³⁾. Young men with high energy contacts are at the highest risk^(1, 2).

Two techniques are widely applied in surgical management of recurrent anterior shoulder dislocation: bone block as described by Latarjet and modified by Patte, and Bankart capsulo-labral reinsertion. Both give good functional results ⁽⁴⁾.

Despite advanced arthroscopic techniques, concerns have been raised with regard to the high recurrence rates in the high demands patients treated by soft tissue procedure ⁽³⁾.

Very few studies have compared the open Bristow-Latarjet procedure with the Bankart procedure. The relative paucity of studies directly comparing these two procedures can be attributed to several factors. Any single surgeon usually has more experience with one technique that he tends to use for the majority of cases. This can result in an unintended technical bias toward a favored technique.

Another significant challenge in conducting comparative studies is the extreme variability of patients undergoing surgery for shoulder instability. A matching process according to number of dislocations, type of bony defect, and preinjury type of sport could potentially reduce some of these biases. When dealing with shoulder instability in athletes, proper outcome assessment is still controversial. (5)

Key to the treatment of anterior shoulder dislocation in this category of patients is making the right diagnosis and performing the correct operation at the optimum time to prevent unnecessary time away from work or sport (2).

In this study, our goal is to compare the clinical outcomes of anterior shoulder stabilization performed by Latarjet procedure with results using arthroscopic Bankart repair in high demands patients with recurrent anterior shoulder dislocation, in a series performed at a single institution. We hypothesized that the latarjet procedure would allow for earlier return to work and sport activity and lower rate of recurrent instability in short term follow up.

AIM OF THE WORK

The purpose of the present study is to compare the clinical outcomes of anterior shoulder stabilization performed by Latarjet procedure versus arthroscopic Bankart repair in high demands patients with recurrent anterior shoulder dislocation.