

Ain Shams University Faculty of Science Botany Department

Mass Production of purified pigments from some algae species

 $\mathbf{B}\mathbf{y}$

Mohamed Ahmed Ali Saleh Hassoub

B.Sc. in Science (Microbiology), 1996 Al-Azhar University

M.Sc. Degree in Science (Botany), 2010 Helwan University Thesis

Submitted in Partial Fulfillment of the requirements for the degree of *Ph.D.* of Philosophy of Science in Botany (Phycology)

Botany Department Faculty of Science Ain Shams University

Ain Shams University Faculty of Science Botany Department

Mass Production of purified pigments from some algae species

Presented by

Mohamed Ahmed Ali Saleh Hassoub

B.Sc. (Microbiology) 1996, Al-Azhar University M.Sc. Degree in Science (Botany), 2010, Helwan University For the award of Ph.D. of Philosophy of Science in Botany (Phycology)

Supervisors

1. Prof. Dr. Adel Fahmy Hamed

Prof. of Phycology, Botany Department, Faculty of Science, Ain Shams University

2. Prof. Dr. Mohamed Mostafa El-Fouly

Prof. of Plant Physiology (Emeritus), Fertilization Technology Department, National Research Centre

3. Prof. Dr. Abo El-Khair Badawy El-Sayed

Prof. of Plant Physiology, Fertilization Technology Department, Head of Algal Biotechnology unit, National Research Centre

4. Dr. Hesham Mohamed Abd El-Fatah

Assistant Prof. of Phycology, Botany Department, Faculty of Science, Ain Shams University

بِسْمِ اللَّهِ الرَّحْمنِ الرَّحِيم

رَ بَّنَا عَاتِنَا مِن لَّدُنكَ رَحَمَةً وَهَيْنَ لَنَا مِن أَحْرَنَا رَشَدَا وَهَيْنَ لَنَا مِن أَمْرِنَا رَشَدَا

صدَق اللَّه العَظيم

سورة الكهيا الأية(١٠)

To

My parents, My Wife

My Children
Menna, Ahmed,
Mariam & Rana

ACKNOWLEDGMENTS

First of all I extend my deepest gratitude and submission to *Allah*, the Mighty creator, who granted me will and power to write this research.

The author wishes to express his deepest gratitude to his academic supervisor, *Prof. Dr. ADEL FAHMY HAMED* Professor of Phycology, Botany Department, Faculty of Science, Ain Shams University, for his generous guidance and supervision enthusiastic scientific knowledge on various steps throughout the work.

The author is also grateful to my ideal supervisor *Prof. Dr. MOHAMED MOSTAFA EL-FOULY*, Professor of Plant Physiology, Fertilization Technology Department, National Research Centre, Cairo, Egypt, for his unlimited help in various ways during this study, layout and creating the present work.

Special thanks are due to *Prof. Dr. ABO EL-KHAIR BADAWY EL-SAYED*, Professor of Plant Physiology, Fertilization Technology Department, Head of Algal Biotechnology unit, National Research Centre, for creating suggesting the topic of study and unlimited help in various ways during this work.

Special thanks are also due to *Dr. HESHAM MOHAMED ABD EL-FATAH*, associate Prof. of Botany, Botany Department, Faculty of Science, Ain Shams University, for scientific support, kindly advice and high-appreciated assistance.

This work was conducted as a part of the Egyptian-German Project Micronutrients and Plant Nutrition Problems in Egypt, implemented by the National Research Centre, Cairo. (Coordinator:

Prof. M. M. El-Fouly) and the Institute of Plant Nutrition (Prof. A. Amberger). The project was supported by the Egyptian Academy of Scientific Research and Technology (ASRT) and the German Fedral Ministry for Economic Cooperation and Development (BMZE) through the German Agency for Technical Cooperation (GTZ).

Special thanks and appreciation are due to *Dr. Doaa and Mohamed Samir* for their great help and co-operation in doing hard work and solving the problems I faced in the lab and outdoor experiments.

Sincere thanks and gratitude to Food Toxins Departement, National Research Centre, Special for both *Dr. Yousef Yasseen Sultan* Assistant Professor and *Dr. Diaa Attia Marrez* Researcher for their kind helps and support during different research periods.

CONTENTS

	Page
* ABSTRACT	1
* AIM OF THE WORK	3
* INTRODUCTION	4
* MATERIALS AND METHODS	32
* RESULTS AND DISCUSSION	57
* REFERENCES	150
* ENGLISH SUMMARY	188
* ARABIC SUMMARY	
* ARABIC ABSTRACT	

LIST OF TITLES

No.	Title	Page
	Material and Methods	
1	I. Preparation of inoculum	34
2	Nutrient solutions	34
3	Cultivation units	35
4	Growth measurements	43
5	Determination of algal pigments	45
6	Chlorophyll production	49
7	Determination of Cu-chlorophyll by GC-MS	52
8	Determination of Cu-chlorophyll by Mass Spectrum	53
9	Determination of Cu-chlorophyll by U.V.	54
10	Determination of Na-Cu-chlorophyll by HPLC	54
11	β-Carotene crystallization	55
12	Phycocyanin extracts preparation	56
	Results and Discussion	
13	Cultivation of algal species	57
14	Indoor growth	57
15	Outdoor cultivation	67
16	II.Extraction and determination of algal pigments	80
17	Measurements of extracted pigments using spectrophotometer	80
18	Extracted pigments from Chlorella vulgaris	80
19	Extracted pigments from Spirulina platensis	86
20	Extraction of Phycocyanin	89
21	Extracted pigments from Nannochloropsis	91
	oculata	

22	Measurements of extracted Pigments using	93
	HPLC	
23	Extracted pigments from Chlorella vulgaris	93
24	Extracted pigments from Spirulina platensis	100
25	Extracted pigments from Nannochloropsis oculata	106
26	III. Production of some algal pigments	112
27	Determination of Cu-chlorophyllin extraction by GC-MS	112
28	Determination of Cu-chlorophyllin by Mass Spectrum	139
29	Determination of Cu-chlorophyllin extraction by U.V.	141
30	Determination of Na-Cu-chlorophyllin using HPLC	142
31	Determination of β-carotene crystallization using HPLC	145
32	Determination of phycocyanin using spectrophotometer	147

LIST OF TABLE S

No.	Title	Page
1	Chemical composition of BG-II growth medium	35
2	The solid phase extraction of Na-cu-chlorophyllin	55
3	GC/MS chemical profile of layer No. 1 of Cuchlorophyllin	113
4	Chemical structure of the major compounds identified by GC/MS in layer No. 1 of Cuchlorophyllin	114
5	GC/MS chemical profile of layer No. 2 of Cuchlorophyllin	120
6	Chemical structure of the major compounds identified by GC/MS in layer No. 2 of Cuchlorophyllin	121
7	GC/MS chemical profile of layer No. 3 of Cuchlorophyllin	125
8	Chemical structure of the major compounds identified by GC/MS in layer No. 3 of Cuchlorophyllin	126
9	GC/MS chemical profile of layer No. 4 of Cuchlorophyllin	130
10	Chemical structure of the major compounds identified by GC/MS in layer No. 4 of Cuchlorophyllin	130
11	GC/MS chemical profile of layer No. 5 of Cuchlorophyllin	136
12	Chemical structure of the major compounds identified by GC/MS in layer No. 5 of Cuchlorophyllin	137
13	Diagnostic Ions in mass spectrum of copper chlorophyllin	140

LIST OF FIGURES

No.	Title	Page
1	Indoor growth units used for algae cultivations polyethylene tube 2.0L	36
2	Different indoor growth units used for algae cultivation 5L and 20L polyethylene bottles	37
3	200L Vertical Sheet Photobioreactor (NRC)	38
4	Front view of 1000L Zigzag Shape Photobioreactor (NRC)	39
5	Open plate (1000L) for outdoor sub-culture	40
6	Open pond, algal biotechnology unit, (NRC)	41
7	(a)Fat soluble chlorophyll during solvent filtration (b)The solvent after filtration	51
8	Dry weight of <i>Chlorella vulgaris</i> , <i>Spirulina platensis</i> and <i>Nannochloropsis oculata</i> (gL ⁻¹) grown in polyethylene tube (2.0 L)	57
9	Productivity and growth parameters of Chlorella vulgaris, Spirulina platensis and Nannochloropsis oculata (Indoor growth) (Dry weight)	59
10	Total chlorophyll of <i>Chlorella vulgaris</i> , <i>Spirulina platensis</i> and <i>Nannochloropsis oculata</i> (mgL ⁻¹)	60
11	Productivity and growth parameter of Chlorella vulgaris, Spirulina platensis and Nannochloropsis oculata (Indoor growth) (Total chlorophyll)	62
12	Total carotene of <i>Chlorella vulgaris</i> , <i>Spirulina platensis</i> and <i>Nannochloropsis oculata</i> (mgL ⁻¹)	63
13	Productivity and growth parameter of Chlorella vulgaris, Spirulina platensis and Nannochloropsis oculata (Indoor growth) (Total carotene)	65
14	Dry weight of <i>Chlorella vulgaris</i> , <i>Spirulina platensis</i> and <i>Nannochloropsis oculata</i> (gL ⁻¹)	68
15	Productivity and growth parameter of Chlorella vulgaris, Spirulina platensis and Nannochloropsis	70

	oculata (Outdoor growth) (Dry weight)	
16	Total chlorophyll of <i>Chlorella vulgaris</i> , <i>Spirulina platensis</i> and <i>Nannochloropsis oculata</i> (mgL ⁻¹)	72
17	Productivity and growth parameter of Chlorella vulgaris, Spirulina platensis and Nannochloropsis oculata (Outdoor growth) (Total chlorophyll)	73
18	Total carotene of <i>Chlorella vulgaris</i> , <i>Spirulina platensis</i> and <i>Nannochloropsis oculata</i> (mgL ⁻¹)	75
19	Productivity and growth parameter of <i>Chlorella vulgaris</i> , <i>Spirulina platensis and Nannochloropsis oculata</i> (Outoor growth) (Total carotene)	77
20	Chlorophyll a of fresh and dry samples of <i>Chlorella vulgaris</i> biomass using different solvents	81
21	Chlorophyll b of fresh and dry samples of <i>Chlorella vulgaris</i> biomass using different solvents	82
22	Total Chlorophyll of fresh and dry samples of Chlorella vulgaris biomass using different solvents	83
23	Total carotene of fresh and dry samples of <i>Chlorella vulgaris</i> biomass using different solvents	85
24	Chlorophyll a of fresh and dry samples of <i>Spirulina</i> platensis biomass using different solvents	87
25	Total carotene of fresh and dry samples of <i>Spirulina</i> platensis biomass using different solvents	89
26	Phycocyanin extraction of Spirulina platensis	90
27	Chlorophyll a of fresh and dry samples of Nannochloropsis oculata biomass using different solvents	91
28	Total carotene of fresh and dry samples of Nannochloropsis oculata biomass using different solvents	93
29	Chlorophyll a of fresh and dry samples of Chlorella	95

	vulgaris biomass using different solvents by HPLC	
30	HPLC chromatogram of chlorophyll a extract from Chlorella vulgaris	96
31	β-carotene of fresh and dry samples of <i>Chlorella vulgaris</i> biomass using different solvents by HPLC	97
32	HPLC chromatogram of β-carotene extract from Chlorella vulgaris	99
33	Chlorophyll a of fresh and dry samples of Spirulina platensis biomass using different solvents by HPLC	100
34	HPLC chromatogram of chlorophyll a extract from Spirulina platensis	102
35	β-carotene of fresh and dry samples of Spirulina platensis biomass using different solvents by HPLC	103
36	HPLC chromatogram of β-carotene extract from Spirulina platensis	105
37	Chlorophyll a of fresh and dry samples of Nannochloropsis oculata biomass using different solvents by HPLC	106
38	HPLC chromatogram of chlorophyll a extract from Nannochloropsis oculata	107
39	β-carotene of fresh and dry samples of Nannochloropsis oculata biomass using different solvents by HPLC	109
40	HPLC chromatogram of β-carotene extract from Nannochloropsis oculata	110
41	GC/MS histogram of layer No. 1 of Cu- chlorophyllin	112
42	GC/MS histogram of layer No. 2 of Cu- chlorophyllin	119
43	GC/MS histogram of layer No. 3 of Cu- chlorophyllin	124

44	GC/MS histogram of layer No. 4 of Cu- chlorophyllin	129
45	GC/MS histogram of layer No. 5 of Cu- chlorophyllin	135
46	Mass spectrum of copper chlorophyllin	140
47	U.V. of copper chlorophyllin	141
48	HPLC chromatogram of Na-Cu-chlorophyllin standard from <i>Chlorella vulgaris</i>	144
49	HPLC chromatogram of Na-Cu-chlorophyllin sample from <i>Chlorella vulgaris</i>	144
50	HPLC chromatogram of β-carotene standard from Chlorella vulgaris	146
51	HPLC chromatogram of β-carotene sample from Chlorella vulgaris	146
52	Phycocyanin extraction of Spirulina platensis	147

LIST OF PLATS

1	Photomicrographs of Chlorella vulgaris	33
2	Photomicrographs of Spirulina platensis	33
3	Photomicrographs of Nannochloropsis oculata	33

LIST OF ABBREVIATIONS

% Percent

μ Specific Growth Rate

μ_{avr.} Specific Growth Rate on Average
 μ_{max.} Maximum Specific Growth Rate

A Acetone
Ca Calcium
cm Centimeter

D Dimethylsulfoxide

E Ethanol

e.g./v.g. For example (*L.exempli gratia*)

et al and Others
etc. (*L.Et Cetra*)
Fe Iron (*L.Ferrum*)
g Doubling Time

HPLC High Performance Liquid Chromatography

hr/hrs Hour (s)

i.e. That Is To Say (*L.idem*)

K Potassium (*L.Kalium*)

M Methanol m Meter (s)

m Cubic Meter (s)
meq Milliequivalent (s)

MgMagnesiummgMilligram (s)mmMillimeter (s)mmhosMillimhosMnManganeseNNitrogen

Na Sodium (*L.natrium*)
C Degree Celsius
P Phosphorus
ppm Part Per Million

Zn Zinc