Serum and Urinary Level of High Mobility Group Box 1 Protein in Patients with Lupus Nephritis

Thesis

Submitted for Partial Fulfillment of MD degree In Internal Medicine

By

Dalia Mohamed Gamal

M.B., B.CH, Msc., Internal Medicine (Ain Shams University)

Under Supervision of

Prof. Dr./ Mervat Mamdouh Abo-Gabal

Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Prof. Dr./ Hanan Mohamed Farouk

Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Assist. Prof. Dr./ Maryam Ahmed Abdel Rahman

Assistant Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Assist. Prof. Dr./ Noran Osama Ahmed El-Azizi

Assistant Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University

قيه لأا قبعوبعلا قروس)501(

- All praise is to **Allah** and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.
- appreciation to **Prof. Dr. Mervat Mamdouh Abo-Gabal** Professor of Internal Medicine and Rheumatology, Faculty of Medicine, Ain Shams University for her encouragement, her kind support and appreciated suggestions that guided me to accomplish this work.
- appreciation to **Prof. Dr. Hanan Mohamed**Farouk Professor of Internal Medicine and Rheumatology, Faculty of Medicine, Ain Shams University for her encouragement, her kind support and appreciated suggestions that guided me to accomplish this work.
- ▶ I wish to express my deepest gratitude to Assist. Prof.
 Dr./ Maryam Ahmed Abdel Rahman Assistant
 Professor of Internal Medicine and Rheumatology,
 Faculty of Medicine, Ain Shams University for her supervision and close valuable guidance all through this work.
- Words are not enough to thank **Assist. Prof. Noran**Osama Ahmed El-Azizi Assistant Professor of
 Internal Medicine and Rheumatology, Faculty of
 Medicine, Ain Shams University for her kind help,
 valuable guidance, assistance, and encouragement.

> Dalia Mahmoud Gamal

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	
• List of Figures	VIII
• Introduction	1
Aim of the study	4
• Review of literature	
Chapter (1): Systemic Lupus Erythematosus	5
Chapter (2): Lupus Nephritis	53
Chapter (3): High Mobility Group Box Protein 1	79
Patients and Methods	87
• Results	106
• Discussion	145
Summary & Conclusion	152
• Recommendations	155
• References	156
Arabic summary	••••

List of Abbreviations

APS : Antiphosholipid syndrome

AVN : Avascular necrosis

AZA : Azathioprine

BAFF: B cell activating factor

CIcs : Circulating immune complexes

CRR : Complete renal response

CSA : Cyclosporine

CYC : Cyclophosphamide

ERS: Estrogen receptors

GBM : Glomerular basement membrane

HMGB1: High Mobility Box protein 1

IL1 : Interleukin 1

IL5 : Interleukin 5

IVIG: Intravenous immunoglobulin

LDGS : Low density granulocytes

LN : Lupus nephritis

MiRNA : Micro RNA

MMF : Mycophenolate

NETS: Neutrophil extra cellular traps

PDCS: Plasmacytoid dendritic cells

PRR : Partial renal response

PTECS: Proximal tubular epithelial cells

List of Abbreviations

RAGE : Receptor for advanced glycation end

products

RTX : Rituximab

SLE : Systemic lupus erthyematosus

SNP : Single nucleotide polymorphism

TGFB: Transforming growth factor beta

Th2 : T helper cells

TLRS: Toll like receptors

TNF: Tumor necrosis factor

List of Tables

Page	Title	Table
33	Summary of the Sydney Consensus	1
	Statement on Investigational Classification	
	Criteria for the APS.	
34	Clinical and immunologic criteria used in	2
	the SLICC classification criteria	
36	Investigations of SLE and monitoring after	3
	diagnosis	
37	Further investigations in SLE	4
57	International Society of Nephrology/Renal	5
	Pathology Society (ISN/RPS) 2003	
	classification of LN.	
106	Description of age among the studied SLE	6
	patients	
106	Description of sex among the studied SLE	7
	patients	
107	Description of significant clinical data	8
	among the studied SLE patients at baseline	
109	Description of different laboratory findings	9
	in the studied SLE patients at baseline	
111	Description of different laboratory findings	10
	in the studied SLE patients after follow up	
113	Steroids and immunosupressives among the	11
	studied SLE patients at base line and after	
	follow up	

Page	Title	Table
115	Description of renal biopsy among the	12
	studied SLE patients at base line	
117	BILAG score at base line and after 6 months	13
	follow up among the studied SLE patients	
119	Numerical scoring of the classic total	14
	BILAG index among studied SLE patients	
	at baseline and after follow up	
120	Detailed SLICC (Damage Score) among	15
	studied SLE patients after 6 months	
122	Number and percent of SLE patients with	16
	different SLICC scores	
123	Comparative study between serum level of	17
	High Mobility Box protein 1 at base line (I)	
	and after follow up(II)	
124	Comparative study between urinary level of	18
	High Mobility Box protein 1(I) at base line	
	and after follow up (II)	
125	Comparative study between numerical total	19
	BILAG score at baseline and after follow up	
126	Relation of gender of SLE patients and	20
	serum, urinary High Mobility Box protein 1	
	(I)	
127	Relation of serum level of high mobility box	21
	protein 1 (I) and different clinical	
	manifestations at base line	

Page	Title	Table
129	Relation of urinary level of high mobility	22
	box protein 1 (I) and different clinical	
	manifestations at base line	
131	Comparative study between SLE nephritis	23
	patients (responders and non responders) as	
	regard serum and urinary levels of High	
	Mobility Box protein 1 (II) after follow up	
132	Comparative study between SLE nephritis	24
	patients (responders and non responders)	
	after follow up as regard total BILAG index	
133	Comparative study between different classes	25
	of renal biopsy as regard serum level of	
	High Mobility Box protein 1 at base line	
134	Comparative study between different classes	26
	of renal biopsy and urinary level of High	
	Mobility Box protein 1 at baseline.	
135	Comparative study between different	27
	categories of renal BILAG as regard and	
	serum, urinary level of high mobility box	
	protein 1 (I)	
136	Comparative study between different	28
	categories of renal BILAG as regard serum,	
	urinary high mobility box protein 1 II after	
	follow up	

Page	Title	Table
137	Correlation between total BILAG score at	29
	base line and serum, urinary levels of high	
	mobility box protein 1(I)	
138	Correlation between total BILAG score after	30
	follow up and serum, urinary level of High	
	Mobility Box protein 1 (II) after follow up	
139	Correlation between renal BILAG score at	31
	base line and serum, urinary level of High	
	Mobility Box protein 1 (I) at base line	
140	Correlation between renal BILAG score	32
	after follow up and serum, urinary levels Of	
	High Mobility Box protein 1 (II)	
141	Correlation between BILAG score after	33
	follow up and SLICC Score	
142	Correlation between SLICC score and High	34
	Mobility Box protein 1 in serum and urine at	
	base line and after follow up	
143	Correlation between age, certain labs at base	35
	line, as CBC, ESR, kidney functions and	
	protein creatinine ratio, C3 C4 activity and	
	chronicity indices of renal biopsy and	
	serum, urinary levels of High Mobility Box	
	protein 1 (I) at base line	

Page	Title	Table
144	Correlation between certain labs after follow	36
	up as CBC, ESR, kidney functions and	
	protein creatinine ratio, C3 and C4 and	
	serum, urinary levels of High Mobility Box	
	protein 1 (II) after follow up	

List of Figures

Page	Title	Fig.
15	Summary of pathogenesis of SLE	1
18	Malar rash	2
19	Discoid rash	3
20	Subacute cutaneous lupus	4
21	Alopecia	5
21	Lupus Profundus or Lupus Erythematosus	6
	Panniculitis	
23	Cutaneous vasculitis	7
24	Periungual Telangiectasias	8
24	Livedo Reticularis	9
25	Oral and nasopharyngeal Ulcers	10
27	Cardiac manifestations in SLE	11
54	Proposed theories for anti-dsDNA in situ	12
	immune complex deposit.	
56	Summary of pathogenesis of lupus nephritis	13
57	Mesangial proliferative lupus nephritis with	14
	moderate mesangial hypercellularity.	
58	Focal lupus nephritis hematoxylin-eosin	15
58	Focal lupus nephritis immunofluorescence	16
59	Diffuse lupus nephritis with hypertensive	17
	vascular changes.	
59	Diffuse lupus nephritis with early crescent	18
	formation.	

Page	Title	Fig.
59	Diffuse lupus nephritis with extensive crescent formation	19
60	Membranous lupus nephritis hematoxylin- eosin	20
60	Membranous lupus nephritis silver stain	21
60	Advanced sclerosis lupus nephritis hematoxylin-eosin	22
77	Suggested treatment algorithm for resistant lupus nephritis.	23
81	Interaction of high mobility group box protein 1 with the different receptors	24
83	Role of HMGB1 in pathogenesis of SLE	25
106	Description of sex among the studied SLE patients	26
116	Description of renal biopsy among the studied SLE patients	27
123	Comparative study between serum level of High mobility box protein 1 at base line and after follow up.	28
127	Comparative study between urinary level of High mobility box protein 1 at base line and after follow up	29
125	Comparative study between BILAG sore at base line and after follow up	30

😂 List of Figures 🗷

Page	Title	Fig.
138	Correlation between total BILAG score	31
	after follow up and serum High Mobility	
	Box protein 1 II after follow up.	
140	Correlation between renal BILAG score	32
	after follow up and serum High Mobility	
	Box protein 1 II after follow up.	
141	Correlation between BILAG score after	33
	follow up and SLICC score.	

Abstract:

Background: High mobility group box 1 protein (HMGB1) is a nuclear DNA binding protein acting as a pro-inflammatory mediator following extracellular release. HMGB1 has been increasingly recognized as a pathogenic mediator in several inflammatory diseases. Elevated serum and urinary levels of HMGB1 have been detected in autoimmune diseases in particular Systemic lupus erythematosus (SLE).

Aim of the Work: the aim of this study was to assess serum and urinary levels of high mobility group box 1 protein in correlation to renal histopathology, disease activity and organ damage in systemic lupus patients.

Patients and Methods: The study was a cross sectional and prospective study carried out on 25 patients with proved active lupus nephritis, all patients were subjected to the following: history taking, clinical examination, CBC, ESR urine analysis, protein/creatinine ratio, C3, C4, assessment of disease activity using Bilag score, serum and urinary levels of High mobility box protein 1 both at the start of the study and after 6 months of follow up and renal biopsy at the beginning of the study.

Results: Levels of serum and urinary High Mobility Box protein 1 were high among the studied patients at base line as regard it's reference range, with a significant difference when compared to their levels after follow up. After follow up the study revealed a positive correlation between disease activity using BILAG score and serum High Mobility box protein 1 also the study showed significant association/ correlation between degree of severity of nephritis and levels of serum HMGB1finally an association was found between levels of urinary High Mobility Box protein 1 and class v of lupus nephritis.

Conclusion: HMGB1 levels (serum and or urinary) are high in SLE patients with nephritis compared to reference range. There is an association / correlation not only between HMGB1 and disease activity in SLE patients but also between it and renal disease activity, severity and class.

Key words: C3, C4, HMGB1, pr/creat ratio, ESR