LPI, transferin saturation, and serum ferritin assay among minimally transfused young thalassemic patients a one year prospective study comparing early and delayed start of low dose deferiprone

Thesis

Submitted for partial fulfillment of MD degree in Pediatrics

Ву

Bassma Abdel Nasser Mohammed

M.B.B.Ch.(2008) M.Sc (2013) Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Mohsen Saleh El Alfy
Professor of Pediatrics
Faculty of medicine- Ain Shams University
Prof. Dr. Mamdouh Abdel Maksoud
Professor of Pediatrics
Faculty of medicine- Ain Shams University
Prof. Dr. Ehab khairy
Assistant Professor of Pediatrics
Faculty of Medicine – Ain Shams University
Dr. Nayera Hazaa
Lecturer of Pediatrics
Faculty of Medicine – Ain Shams University
Dr. Mohammed Tarif
Lecturer of Clinical Pathology
Faculty of medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2017

Acknowledgement

First and foremost, thanks and praise **ALLAH**, most gracious, most merciful.

I would like to express my deep gratitude, thanks and respect to our eminent **Prof. Mohsen Saleh El Alfy,** *Professor of Pediatrics, former head of department of pediatrics, Faculty of Medicine, Ain Shams University* for giving me the opportunity to work under his meticulous supervision and for his excellent guidance and powerful support. His great help and support will never be forgotten.

I would like to thank **Prof.Mamdouh Abdel Maksoud,** *Professor of Pediatrics, Faculty of Medicine, Ain Shams University* for accepting to supervise my work in this study.

No words can be sufficient to express my deep gratitude, admire and appreciation to **Prof. Ehab Khairy**, *Professor of Pediatrics*, *Faculty of Medicine*, *Ain Shams University* for his great support, valuable advice and continuous encouragement. His sincere efforts and help will never be forgotten and will always be a guidance for me.

I wish to express my deep thanks and utmost gratitude to **Prof. Nayera Hazaa**, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her guidance, advice and

fruitful suggestions without which this work would have never been accomplished.

I wish to express my deep appreciation and gratitude to **Prof. Mohammed Tarif,** *Assistant Professor of* clinical pathology for his great help to complete this work. His efforts are really appreciated.

Many thanks and appreciation to all the patients who accepted to be enrolled in this study, without their help, we would never be able to accomplish this work.

Last but not by any means least, I would like to express my warm gratitude to my Mother, Father and all members of my family for their kindness, trust, unfailing support and much needed encouragement.

\

List of Contents

Title	Page No.
Introduction	1
Aim of the study	3
Literature review	4
Patients and methods	41
Results	55
Discussion	91
Summary	101
Conclusion	103
Recommendations	104
References	105
Arabic Summary	_

List of Abbreviations

BFUe	Blast forming unit erythrocyte
ВМР	Bone morphogenic protein
BMPR	Bone morphogenic protein receptor
CFU-e	Colony forming unit committed to erythropoiesis
CT	Computerized tomography
dcytB	Duodenal cytochrome B
DMT1	Divalent metal transporter
ЕРО	Erythropoietin
ERFE	Erythroferrone
Fe	Iron
FPN1	Ferroportin
GDF11	Growth differentiation factor 11
GDF15	Growth differentiation factor 15
HSP70	Heat shock protein 70
IE	Ineffective erythropoiesis
IRE	Iron responsive element
IRP	Iron regulatory protein

LCI	Labile cellular iron
LIC	Liver iron concentration
LIP	Labile iron pool
LPI	Labile plasma iron
LVEF	Left ventricular ejection fraction
MRI	Magnetic resonance imaging
NTBI	Non transferrin bound iron
ROIs	Reactive oxygen intermediates
ROS	Reactive oxygen species
SMAD	Small mothers against decapentaplegic
TBI	Transferrin bound iron
TfR	Transferrin receptor
TSAT	Transferrin saturation
ZIP14	Zinc import protein

List of Figures

Fig.	Title	Page
1.	The pathogenesis of thalassemia syndromes	5
2.	The effect of iron overload on different organs	7
3.	Major iron flows and their regulation by hepcidin & ferroportin.	14
4.	Regulation of hepcidin synthesis in hepatocytes.	18
5.	The physiology and pathology of labile cellular iron	20
6.	The difference between iron management and iron mismanagement during iron overload	27
7.	Pathologic mechanisms and consequences of iron overload	28
8.	Correlation between the LPI and transferrin saturation.	62
9.	Correlation between the LPI and age at first transfusion	62
10.	Correlation between the LPI and age at enrolment	63
11.	Correlation between the LPI and the time till randomization	63
12.	ROC curve for the cut off value of serum ferritin, transferrin saturation, number of transfusions and grams of RBCs for LPI ≥0.2 among beta thalassemia major patients at time of randomization	66

13.	Correlation between the transferrin saturation and age at enrolment	69
14.	Correlation between the transferrin saturation and serum ferritin	69
15.	Correlation between the transferrin saturation and number of transfusions	70
16.	ROC curve for the cut off value of serum ferritin, number of transfusions and grams of RBCs for transferrin saturation ≥75 among beta thalassemia major patients at time of randomization	72
17.	Percentage of patients in group A who reached end point (serum ferritin > 1000) at 3 months visit	80
18.	Percentage of patients in group B who reached end point (serum ferritin > 1000) at 3 months visit	80
19.	Serum ferritin level was significantly higher among patients in group B compared to group A at 3 months visit	81
20.	Percentage of patients in group A who reached end point (serum ferritin > 1000) at 6 month visit	84
21.	Percentage of patients in group B who reached end point (serum ferritin > 1000) at 6 month visit	84
22.	Serum ferritin level was significantly higher among patients in group B compared to group A at 6 month visit	85

23.	Number of transfusions was significantly higher among patients in group A compared to group B at 6 month visit	85
24.	Percentage of patients in group A who reached end point (serum ferritin > 1000) at 9 month visit	87
25.	Percentage of patients in group B who reached end point (serum ferritin > 1000) at 9 month interval	87
26.	Percentage of patients in group A who reached end point (serum ferritin > 1000) at 12 month visit	89
27.	Percentage of patients in group B who reached end point (serum ferritin > 1000) at 12 month visit	89
28.	Time till reaching the end point was significantly higher in group A patients compared to group B patients at the end of the study.	90
29.	Amount of transfused RBCs was significantly higher in group A patients compared to group B patients at the end of the study	90

List of Tables

Table	Title	Page
1.	Clinical data at enrollment among Beta thalassemia major patients	56
2.	Laboratory data at enrollment among beta thalassemia major patients	57
3.	The average laboratory data during the period between enrollment and randomization among beta thalassemia major patients	58
4.	Clinical data at the time of randomization among beta thalassemia major patients	59
5.	Laboratory data at the time of randomization among beta thalassemia major patients	60
6.	Correlation between LPI and clinical and laboratory data among beta thalassemia major patients at time of randomization	61
7.	Linear regression analysis for predictors of LPI	64
8.	ROC curve for the cut off value of serum ferritin, transferrin saturation, number of transfusions and grams of RBCs for LPI ≥0.2 among beta thalassemia major patients at time of randomization	65

9.	Correlation between transferrin saturation and clinical and laboratory data among beta thalassemia major patients at time of randomization	68
10.	ROC curve for the cut off value of serum ferritin, number of transfusions and grams of RBCs for transferrin saturation ≥ 75 among beta thalassemia major patients at time of randomization	71
11.	Correlation between LPI and clinical and laboratory data at the end of the study	74
12.	Correlation between transferrin saturation and other clinical and laboratory data at the end of the study	75
13.	Clinical and laboratory data of group A Patients all through the study period	76
14.	Clinical and laboratory data of group B patients all through the study period	77
15.	Comparison between both groups as regards clinical and laboratory data at time of randomization	78
16.	Comparison between both groups as regards clinical and laboratory data at 3 months visit	79
17.	Comparison between both groups as regards clinical and laboratory data at 6 months visit	82

18.	Comparison between both groups as regards clinical and laboratory data at 9 months visit	86
19.	Comparison between both groups as regards clinical and laboratory data at the end of the study	88

Abstract

Background: Labile plasma iron (LPI) is considered the major source of iron toxicity; nevertheless LPI control is an essential component of preventive-chelation therapy.

Aim: to detect the time of appearance of LPI in infants with beta thalassemia major in relation to other markers of iron overload and to evaluate the efficacy and safety of the early usage of low dose deferiprone in thalassaemic patients.

Methods: Forty children recently diagnosed with beta thalassemia major; who had begun transfusion without iron chelation therapy; with SF < 400 ng/mL, TSAT < 70% and LPI < 0.2 μ M, were enrolled in a prospective randomized study. Patients were followed up every month; when the following criteria SF \geq 400 ng/ml or transferrin saturation (TSAT) \geq 70% or LPI \geq 0.2 μ M were met, patients were randomized either to start deferiprone (DFP) at a dose of (50 mg/kg/day) or to be followed with standard observation without chelation (NC).

Results: LPI levels positively correlated with TSAT levels (P<0.001) and age at enrollment (P=0.002), however there was no correlation between LPI and serum ferritin, number of transfusions, amount of transfused RBCs or transfusional iron loading rate. LPI appearance was best predicted by TSAT (AUC=0.975), followed by number of units of transfused RBCs (AUC=0.79), and number of grams of transfused RBC (AUC=0.77), lastly was serum ferritin (AUC=0.66). The cut off value of each parameter was also determined (75% for transferrin saturation, 1090 grams of transfused RBCs, 6 times blood transfusion, and 500 ng/ml for serum ferritin). After randomization all non-chelated patients reached end points prior to completing 12 months

follow-up with a mean duration of 9.82 ± 2.71 and 5.14 ± 2.18 months for chelated and NC respectively. Serum ferritin was significantly higher in the non-chelated group at 3 month and 6 month visits (P= 0.005, P= 0.007). There was no difference in LPI level or TSAT between the two groups over the post randomization follow up period (P= 0.32, P= 0.27). Both groups had comparable adverse events (P=0.781).

Conclusion: Toxic iron (LPI) might appear early in beta thalassaemic patients at ferritin level <1000ng/dl and fewer number of transfusions (<5 times) with high TSAT. We also demonstrated that the early use of low dose iron chelation therapy significantly decreased the iron overload parameters and was not associated with increased frequency of adverse events.

INTRODUCTION

Regular and frequent red blood cell transfusions have significantly increased the life expectancy of patients with beta thalassemia major (TM). However this leads to excess iron accumulation in many organs leading to progressive organ dysfunction (*Argyropoulou et al.*, 2007).

Under normal conditions, serum transferrin is 20% to 35% saturated with iron. However, when TSAT is >70%, significant amounts of NTBI appear in plasma (*Brissot et al.*, 2012) and are deposited in cardiac myocytes, hepatocytes, pituitary cells, and pancreatic cells (*Breuer et al.*, 2000).

There is a fraction of NTBI which is redox-active and is termed labile plasma iron (LPI), the possibly toxic component of NTBI which can be controlled by chelation therapy (*Brissot.*,2012); Particularly high levels of NTBI/LPI have been found in beta thalassemia major (*Koren et al.*, 2010).

Serum ferritin is not always reliable, as it is affected by inflammation and liver damage (*Argyropoulou et al.*, 2007); Moreover serum ferritin levels often fail to predict impending cardiac iron overload (*Wood*, 2010), however its assessment is still economically favorable and may be the only iron overload measure available in some countries (*Musallam et al.*, 2013).