

The Possible Protective Role of Curcumin against Radiation Induced Cytogenetic Damages in Mice

A Thesis submitted for **PhD degree of Science** (**Zoology**)

BY Manal Ramadan Mohammed Hassan

(M.Sc.) Assistant Lecturer
Department of Radiation Biology
National Center for Radiation Research and Technology
Atomic Energy Authority

Supervised by

Prof. Dr. Nagwa H. A. Hassan

Professor of Cytogenetics, Zoology Department, Faculty of Science, Ain Shams University

Prof. Dr. Hassan A. E. El-Dawy

Professor of Radiation Cytogenetics Rad. Biol. Department, National Center for Radiation Research and Technology, Atomic Energy Authority

Prof. Dr. Eman Noaman Aly

Professor of Biochemistry Rad. Biol. Department, National Center for Radiation Research and Technology, Atomic Energy Authority

> Faculty of Science Ain Shams University

> > 2014

The Possible Protective Role of Curcumin against Radiation Induced Cytogenetic Damages in Mice

A Thesis submitted for PhD degree of Science (Zoology)
BY

Manal Ramadan Mohammed Hassan

(M.Sc.) Assistant Lecturer
Department of Radiation Biology
National Center for Radiation Research and Technology
Atomic Energy Authority

Supervision Committee:

Prof. Dr. Nagwa H. A. Hassan

Professor of Cytogenetics, Zoology Department Faculty of Science, Ain Shams University

Prof. Dr. Hassan A. E. El-Dawy

Professor of Radiation Cytogenetics Rad. Biol. Department National Center for Radiation Research and Technology Atomic Energy Authority

Prof. Dr. Eman Noaman Aly

Professor of Biochemistry Rad. Biol. Department, National Center for Radiation Research and Technology Atomic Energy Authority

"بسم الله الرحمن الرحيم"

"و قل ربي زدني علما"

" صدق الله العظيم"

(سورة "طه" الآية رقم□

Acknowledgement

All my thanks, first, before, and all above, to the Great Almighty Allah, the most merciful for his countless blessings bestowed upon me and for giving me the guidance and strength to complete out this study.

I would like to express my cordial thanks to **Prof. Dr. Nagwa H. A. Hassan**, Professor of Cytogenetics, Zoology Department, Faculty of Science, Ain Shams University, for meticulous supervising, and for her sincere help and guidance. She was both gracious and generous with her time, advice and knowledge to complete this work.

I can't by any means express my appreciation and deep gratitude to **Prof. Dr. Hassan A. E. El-Dawy**, Professor of Radiation Cytogenetics, National Center for Radiation Research and Technology, Atomic Energy Authority, for his sincere help, guidance and meticulous supervision. I appreciate his invaluable guidance and enduring patience that made me able to complete this work.

I would like to express my deep appreciation and everlasting gratitude to **Prof. Or. Eman Noaman Aly**, Professor of biochemistry, National Center for Radiation Research and Technology, Atomic Energy Authority, for her honest assistance, trustful help, recommending and supplying the natural compound under examination (curcumin). Her training allowed me to broaden my knowledge and scientific skills and I feel extremely privileged to have the opportunity to work and study under her supervision the biochemical section of this work.

My sincere thanks to all members of Radiation Biology Department. This work was possible through the facilities given by the National Center for Radiation Research and Technology. Atomic Energy Authority.

Finally, I would like to sincerely thank my **family** for supporting, and encouraging me, Thank you for your never ending support and love. There is no way to thank each of them enough.

Manal Ramadan Mohammed

Dedication

To

My helpful and beloved parents, sisters, brother, husband and my sons.

CONTENTS

∢	AbbreviationsI
∢	List of Tables II
∢	List of Figures
∢	Abstract1
∢	Introduction
∢	Aim of the Work5
∢	Review of Literature:
•	Ionizing Radiation
•	Gamma Rays7
•	The Primary Effects of Ionizing Radiation7
	1- Direct Theory
	2- Indirect Theory
•	Damaging Effects of Free Radicals
•	Electron Spin Resonance (ESR):
•	Post-Irradiation Recovery Processes
•	Genetic Effects of Ionizing Radiation14
•	Types of Chromosomal Aberrations
	I- Structural Chromosomal Aberrations
	1-Chromatid gaps and isogaps
	2-Chromatid breaks
	3-Chromosome-breaks
	4-Dicentric (or Polycentric) Chromosomes
	5- Rings21
	II- Numerical Aberrations
•	Aberration Fates

•	Relation between Ionizing Radiation and Chromosomal	
	Aberration	25
	Biochemical effects of ionizing radiation	26
	• Lipid peroxidation	26
	• Malondialdehyde (MDA)	27
	• Glutathione	28
	• Reduced glutathione (GSH)	29
	• Superoxide Dismutase (SOD)	30
•	Classification of Blood Cells and Components	31
•	Blood Formation in Normal Adult Mice	32
•	Effect of Ionizing Radiation on White Blood Cells	34
•	Radioprotectors	36
•	Classification of Radioprotectors	37
•	Mechanisms of Protection from Radiation	38
	a- Anoxia or Hyopxia	39
	b- Antioxidant Action	39
	c- Repair Mechanism	40
	d- Inactivation of Free Radical Mechanism	40
	e- Chelation Mechanism	40
	f- The Mixed Disulfide Mechanism	41
•	Curcumin	41
•	Curcumin Analogues.	43
•	Uses Of Curcumin.	46
•	Tissue Distribution of Curcumin	47
•	Antioxidant Activity of Curcumin	47
•	Toxic and Carcinogenic Properties of Curcumin	. 50

•	ROS and Curcumin.	53
•	Radioprotection and Radiosensitization by Curcumin	56
•	Curcumin Bioavailability, Pharmacodynamics, Pharmacokinetic	s,
	and Metabolism	59
•	Structure–Activity Relationship of Curcumin	62
•	Genetic Effects of Curcumin.	63
∢	Material and Methods:	
•	Experimental Animals	68
•	Irradiation with Gamma Rays	68
•	Curcumin	69
•	Experimental Design	70
•	Tissue and Blood Sampling	71
•	Devices	72
•	Chromosomal Aberrations Assay	73
•	Method of chromosomal preparation from bone marrow cells	74
•	Giemsa Staining.	76
•	Scoring Criteria for Chromosomal Analysis	76
•	Determination of Total Free Radicals	78
•	Preparation of lyophilized spleen samples	78
•	Electron Spin Resonance (ESR) Spectrometer	79
•	ESR Spectra Measurements	79
•	Biochemical Analysis	81
•	Liver homogenates preparation.	81
•	Determination of Superoxide dismutase (SOD) activity in	
	tissue.	81

•	Determination of reduced glutathione (GSH) content in Liver	.85
•	Determination of lipid peroxidation as malondialdehyde (MDA)	
	content in liver	.87
•	Determination of the Percentage of DNA Fragmentation in Tissue	by
	Diphenylamine Assay	.90
•	Preparation and Staining of Blood Films	.93
•	Dry blood smears preparation	93
•	Leishman's stain	.93
•	Statistical Analysis.	.94
∢	Results:	
•	Chromosomal aberration study among experimental groups	.96
	I- Control groups:	.96
	II- Curcumin groups:	.98
	III- Irradiated groups:	101
	IV- Curcumin injected & irradiated groups:	104
•	Comparison between the results of total aberrant cells and severe	
	damaged cells (SDC) among experimental groups	107
•	Total structural aberrations comparison among experimental	
	groups	112
•	Comparison between the different types of the structural aberration	ns
	among experimental groups	118
	a- Chromosome type aberrations	118
	b- Chromatid type aberrations	.123
•	Comparison between the cells that carrying different types of	
	structural aberrations among experimental groups	128
	a- Cells with Chromosome type aberrations	.128
	b- Cells with Chromatid type aberrations13	34

•	Comparison between the results of total numerical aberrations among	
	experimental groups	40
•	Effect of curcumin or/and exposure to γ -radiation on the total free	
	radicals in spleen tissues.	144
•	Liver superoxide dismutase (SOD) activity.	147
•	Liver glutathione (GSH) content	50
•	Liver malondialdehyde (MDA) level1	53
•	Percentage of DNA fragmentation in liver tissues	56
•	Differential count of peripheral blood and scoring abnormalities1	159
∢	Discussion:	180
∢	Summary & Conclusion: 2	12
<	References:	218
<	Arabic Summary:	
<	Arabic Abstract:	

Abbreviations

C.Att. Centromeric attenuation

C.F. Centric fusion

Chs.Ab. Chromosome type aberrations
Cht.Ab. Chromatid type aberrations

Curc Curcumin
Del. Deletion

DMSO Dimethyle sulphoxide
DNA Deoxyribonucleic acid
DPTA Diamine penta -cetic acid

DTNB 5, 5-dithiobis (2-nitrobenzoic acid)

E. to E. End to end association

EDTA Ethylene diamine tetra-acetic acid

Endom. Endomitosis

ESR Electron spin resonance

F Fragment

GSH Glutathione (reduced form).

GSSG Glutathione disulphide (oxidized form).
IAEA International Atomic Energy Authority

MDA Malondialdehyde

N. Ab. Numerical aberrationsN. Ab. cells Numerical aberrant cellsNBT Nitro blue tetrazolium

NCRRT National Center for Radiation Research and Technology

Poly. Polyploidy

ROS Reactive oxygen species

Round per minute Rpm SDC Severe damaged cells SOD Superoxide dismutase St. Ab. Structural aberrations St. Ab. cells Structural aberrant cells TBA Thiobarbituric acid TCA Trichloroacetic acid WBC White blood cells

List of Tables

Table No.	Title	Page No.
1	Effect of 20mg/kg b.wt. curcumin or/and exposure to 4Gy γ- radiation on the mean ±SE. and percentage of [Total Ab. Cells: total aberrant cells, St. Ab. Cells: structural aberrant cells, N. Ab. Cells: numerical aberrant cells and SDC: severe damaged cells] in bone marrow cells of male albino mice 1, 3 and 7 days post treatment.	111
2	Effect of 20mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE of [Total structural aberrations (St.Ab.), chromosome type aberrations (Chs.Ab.) and chromatid type aberrations (Cht.Ab.)] in bone marrow cells of male albino mice 1, 3 and 7 days post treatment.	116
3	Effect of 20mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE of [different chromosome type aberrations; C.Att: centromeric attenuation, C.F.: centric fusion, Ring, chromosome gap and chromosome break] in bone marrow cells of male albino mice 1, 3 and 7 days post treatment.	119
4	Effect of 20mg/kg b.wt. curcumin or/and exposure to 4Gy γ- radiation on the mean ±SE of [different chromatid type aberrations; Del: deletion, F.: fragment, E. to E.: end to end association, chromatid gap and chromatid break] in bone marrow cells of male albino mice 1, 3 and 7 days post treatment.	126
5	Effect of 20mg/kg b.wt. curcumin or/and exposure to 4Gy γ- radiation on the mean ±SE and percentage of [cells with chromosome type aberrations; C.Att: centromeric attenuation, C.F.: centric fusion, Ring, chromosome gap and chromosome break] in bone marrow cells of male albino mice 1, 3 and 7 days post treatment.	130
6	Effect of 20mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE and percentage of [cells with chromatid type aberrations; Del: deletion, F.: fragment, E. to E.: end to end association, chromatid gap and chromatid break] in bone marrow cells of male albino mice 1, 3 and 7 days post treatment.	137
7	Effect of 20mg/kg b.wt. curcumin or/and exposure to 4Gy γ- radiation on the mean ±SE and percentage of [Total N. Ab.: Total numerical aberrations, Poly.: polyploidy and Endom.: endomitosis] in bone marrow cells of male albino mice 1, 3 and 7 days post treatment.	142
8	Effect of 20mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE. of the total free radicals/ 10^{15} in spleen of male albino mice 1, 3 and 7 days post treatment.	145
9	Effect of 20mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on liver SOD activity of male albino mice 1, 3 and 7 days post treatment.	148
10	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ- radiation on liver GSH content of male albino mice1, 3 and 7 days post treatment.	151
11	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ- radiation on liver MDA level of male albino mice 1, 3 and 7 days post treatment.	154

12	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ- radiation on the percentage of the DNA fragmentation in liver of male albino mice 1, 3 and 7 days post treatment.	157
13	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ- radiation on differential count percentages in peripheral blood of male albino mice 1, 3 and 7 days post treatment.	165
14	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ- radiation on mean ±SE of peripheral blood differential count of male albino mice 1, 3 and 7 days post treatment.	168
15	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE. and percentage of the total normal and abnormal count of peripheral white blood cells of male albino mice 1, 3 and 7 days post treatment.	169
16	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE. and percentage of the lymphocytes normal and abnormal count of male albino mice 1, 3 and 7 days post treatment.	170
17	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE. and percentage of the monocytes normal and abnormal count of male albino mice 1, 3 and 7 days post treatment.	172
18	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE. and percentage of the normal and abnormal neutrophils count of male albino mice1, 3 and 7 days post treatment.	174
19	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE. and percentage of the normal and abnormal eosinophils count of male albino mice 1, 3 and 7 days post treatment.	177
20	Effect of 20 mg/kg b.wt. curcumin or/and exposure to 4Gy γ - radiation on the mean \pm SE. and percentage of the normal and abnormal basophils count of male albino mice 1, 3 and 7 days post treatment.	178