Feasibility of Calculating SYNTAX Score Using Coronary Computed Tomography with Reference to Invasive Coronary Angiography

Thesis
Submitted for partial fulfillment of master degree in Cardiology
By

Adel Adnan Elmaghrabi

M.B.B.Ch

Under supervision of

Prof. Dr. Mona Ibrahim Abul Soud

Professor of Cardiology, Ain Shams University

Dr. Ahmed Elsayed Yousef

Lecturer of Cardiology, Ain Shams university

Dr. Diaa El Din Ahmed Kamal

Lecturer of Cardiology , Ain Shams university

First and foremost, I thank God for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to *Prof. Mona Abul Soud*, Professor of Cardiology, Ain Shams University, for her great support and stimulating views as a talented teacher & an excellent supervisor.

I would also like to express my sincere gratitude for *Dr. Ahmed Elsayed*, Lecturer of cardiology, Ain Shams University, for his great support & help throughout this work as well as his active, persistent guidance and overwhelming kindness

I must extend my warmest and deepest gratitude to *Dr. Diaa El Din Kamal*, Lecturer of Cardiology, Ain Shams University, for his great help. His continuous encouragement was of great value and support to me.

Also, I cannot forget to express my sincere gratefulness & deep thanks for all staff members of the cardiology department at Dar El Fouad Hospital. Without their help, I wouldn't have been able to accomplish this work.

Last but definitely not least, I would like to thank my family for always being there for me. To them I owe my life.

LIST OF CONTENTS

	Subject	Page
Introduction Aim of the Work Review of Literatu Chapter 1: Ata		1 4 5 5
	 Historical overview 	5
	 Pathophysiology of atherosclerosis 	6
	Common sites of atherosclerosisClinical manifestations of atherosclerosis	7 8
Chapter2:	Myocardial revascularization	9
	Historical overview	9
	Historical overview of coronary	10
	angiography and angioplasty	
	 Development of Coronary stents 	14
	• The role of antiplatelets	16
	 Historical review of CABG 	17
	 Current guidelines on myocardial revascularization 	18
Chapter 3	 The SYNTAX trial 	22
	 Five results of the SYNTAX trial 	23
	 The SYNTAX score 	24

CHAPTER 4	Computed tomography:	
	Historical overview of computed tomography	26
	 Technology 	29
	• Cardiac applications of MSCT	39
Patients & Methods		41
Results		49
Discussion		58
Conclusions		68
Recommendations		69
Limitations		70
Summary		71
References		74
Arabic summary		_

Subject

Page

LIST OF FIGURES

Fig.	Title	Page
(1)	(left) The mummy of Esankh, male, (1070-712 BCE), undergoing CT scanning, (right)Mummy in wooden case	5
(2)	Stages of Atherosclerosis	7
(3)	Werner Forssmann performs self-catheterization, plane x-ray showing catheter course from left upper limb to the heart	11
(4)	Recommendations for decision –making and patient information in the elective setting	20
(5)	Indications for revascularization with stable angina or silent ischemia	21
(6)	Recommendation for the type of revascularization in patients with SCAD	25
(7)	One of the earliest scanners, constructed by G. Hounsfield, can still be seen at the Mayo Clinic in Rochester, Minnesota (USA) with the brain image acquired from it	26
(8)	Basic components of MSCT machine	29

Fig.	Title	Page
(9)	Two radiation sources and two detector panels are oriented at 90 degrees from each other. A coneshaped beam of radiation passes from each source, through the patient to each detector	33
(10)	Depending on the traversed material, emitted photons are partially absorbed or scattered. The remaining photons are collected and measured by the detectors on the opposite side	35
(11)	SYNTAX segments	47
(12)	Figure 12 Correlation between the total SYNTAX score by MSCT CA vs ICA	51
(13)	Comparison between the ability of MSCT CA (above) and ICA (below) to visualize side branch at CTO site, proximal stump and filling of artery distal to CTO (CTO mid RCA)	56
(14)	CA and MSCT CA respectively displaying a bifurcation lesion Medina class 001 (red arrow)	57
(15)	ICA and MSCT CA of patient 9 showing a bifurcation lesion in OM1 Medina class 111 (Red arrows	57

LIST OF TABLES

Table No.	Title	Page
(1)	Demographic and clinical data	49
(2)	Conventional vessel based analysis	50
(3)	Mean Total/Per vessel/Per lesion SYNTAX score	53
(4)	Lesion based analysis	54
(5)	Sub analysis of Bifurcation Lesion Medina class	
	and total occlusion blunt stump	55

LIST OF ABBREVIATIONS

ACCURACY: Assessment by Coronary Computed

Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography

ACCF : American College of Cardiology Foundtion

ACS Acute coronary syndrome

AHA : Amercian Heart Association

AMI : Acute myocardial infarction

BMI : Body mass index

BMS : Bare metal stent

CA : Coronary angiography

CABG : Coronary artery bypass grafting

CAD : Coronary artery disease

cMPR : Curved multiplanar reconstruction

CTO : Chronic total occlusion

DEB : Drug eluting balloon

DES : Drug eluting stent

DM : Diabetes mellitus

ECG : Electrocardiogram

FDA : Food and drug administration

HbA₁**C** : Glycated hemoglobin

HR : Heart rate

HTN: Hypertension

HU : Hounsfield unit

ICA : Invasive Coronary angiography

ISR : Instent restenosis

IMA : Internal mammary artery

IU : International unit

IV : Intravenous

IVUS : Intravascular ultrasound

JNC : Joint National Committee on Prevention,

Detection, Evaluation, and Treatment of High

Blood Pressure

Kv : Kilovolt

LAD : Left anterior descending coronary

LCx : Left Circumflex

LM : Left main coronary

MIP : Maximum intensity projection

MPR : Multiplanar reconstruction

MSCT : Multislice CT

MSv : Millisievert

PCI : Percutaneous coronary intervention

SCAD : Stable coronary artery disease

SYNTAX : Synergy between Percutaneous intervention

with Taxus and cardiac surgery

TIMI : Thrombolysis in myocardial infarction

VRT : Volume rendering technique

3D : Three dimensional

Introduction

Coronary artery disease (CAD) has superseded all other causes as the leading cause of death worldwide. Despite aggressive measures taken whether by increasing social awareness of risk factor modification and continuous improvement of preventive medicine, it remains to be on the rise and is considered as a true pandemic. (1)

Coronary artery disease lesion characteristics and complexity are recognized predictors of peri-procedural complications and long-term mortality; thus a crucial stage of management is to thoroughly evaluate the severity of CAD. The current gold standard for determining the presence of obstructive CAD is via cardiac catheterization. (3)

The synergy between Percutaneous coronary intervention with Taxus and cardiac surgery score (SYNTAX score) is a score that was developed aiming at comprehensively assessing lesion characteristics. It is derived from a combination of classifications including the American Heart Association/American College of Cardiology, modified BARI classification, chronic total occlusion and bifurcation scores, and Leaman classification.(3)

The design of the SYNTAX score takes into consideration several parameters which can assist in better anticipation of the potential risks of percutaneous or surgical revascularization.

(4)The syntax score assesses all anatomic components of the coronary circulation with respect to their functional impact, including the presence of bifurcations, trifurcations, total occlusions, long lesions, thrombus, calcification, and small vessel disease. Higher SYNTAX scores are suggestive of more complex CADwhich denotes a potentially worse prognosis as a result of a bigger therapeutic challenge. (4)

From a clinical perspective, the benefit of the scoring system facilitates the process of patient informed consent and enables physicians to clarify to patients the potential risks of revascularization and of adverse events according to the type of revascularization procedure as well as the type of revascularization recommended (CABG vs. PCI). (4)

The up-to-date European guidelines on revascularization have recommended the creation of a heart team which serves the purpose of a balanced multidisciplinary decision process. This approach recommends that PCI should be deferred to a subsequent session after the initial CA in patients with stable complex CAD. A multidisciplinary heart team discussion should take place to review the CA and procure an optimal therapeutic plan. Multiple factors are taken into account before reaching a final decision, one of which is the patient's SYNTAX score, which is considered a principalcontributor.(5)

The presence of non-invasive methods of coronary artery assessment had to be evaluated with regards to their reliability and ability to provide a detailed study of coronary lesions. This could facilitate the provision of sufficient data that could assist the cardiac physician team to formulate a treatment plan, whether PCI or CABG surgery.(6)

Of particular interest is the multislice computed tomography (MSCT) coronary imaging, which has over the past decade arose as one of the most promising tools in the assessment of coronary lesions. MSCT CA has been studied to a great extent in assessment of its ability as a diagnostic tool. The first prospective multicenter data provided by the ACCURACY trial evaluated the diagnostic performance of current-generation 64multidetector row multislice CT compared with standard invasive coronary angiography in symptomatic individuals without known coronary artery disease with intermediate disease prevalence. The results of the study revealed that MSCT is highly accurate in detecting obstructive coronary artery lesions. The feasibility of calculation of the SYNTAX score via MSCT coronary imaging would facilitate an upstream selection process carried out by the heart team with regards to the optimal revascularization method (CABG or PCI) prior to performing CA, thereby optimizing patient management based on coronary anatomy and lesion complexity.(7)

Aim of the work

To test the feasibility of calculating the SYNTAX score using Multislice Computed Tomography Coronary Angiography (MSCTCA) in comparison to using invasive coronary angiography.