

SIMULTANEOUS ELECTRICITY GENERATION AND WASTEWATER TREATMENT USING MICROBIAL FUEL CELLS

By

Safwat Mahmoud Safwat Abd ElAzim Ahmed

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

CIVIL ENGINEERING - PUBLIC WORKS

SIMULTANEOUS ELECTRICITY GENERATION AND WASTEWATER TREATMENT USING MICROBIAL FUEL CELLS

By

Safwat Mahmoud Safwat Abd ElAzim Ahmed

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

CIVIL ENGINEERING - PUBLIC WORKS

Under the Supervision of

Prof. Dr. Hisham Sayed Abdel-Halim Dr. Ehab Helmy Rozaik

Professor of Sanitary &
Environmental Engineering
Faculty of Engineering
Cairo University

Assistant Professor of Sanitary & Environmental Engineering Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

SIMULTANEOUS ELECTRICITY GENERATION AND WASTEWATER TREATMENT USING MICROBIAL FUEL CELLS

By

Safwat Mahmoud Safwat Abd ElAzim Ahmed

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

CIVIL ENGINEERING - PUBLIC WORKS

Approved by the Examining Committee
Prof. Dr. Hisham Sayed Abdel-Halim, Thesis Main Advisor
Prof. Dr. Ehab Mohamed Rashed, Internal Examiner
 Prof. Dr. Maha Mostafa Elshafai, External Examiner - Housing and Building National Research Center, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Acknowledgements

First, the deep thank to Allah by the grace of whom the progress and success of this work was possible.

I am deeply grateful to **Prof. Dr. Hisham Sayed Abdel-Halim**, Prof. of Sanitary and Environmental Engineering, Faculty of Engineering, Cairo University for patient guidance, helpful suggestions, great support and cooperation during this research progress.

I would like to express my deepest appreciation to my supervisor **Dr.Ehab Helmy Rozaik**, Associate Professor of Sanitary and Environmental Engineering, Faculty of Engineering, Cairo University for his diligent effort, endless help, motivation and enthusiasm he transmitted to me during the research progress.

I owe gratitude and thanks to Prof. Dr. Maha Elshafai, Prof. Dr. Osama Hodhod, Dr. Khaled Zaher, Dr. Minerva Edward, Dr. Abdel-Salam El-Awwad, Eng. Rana Ehab, and Eng. Mostafa Samir for all the support they gave me.

I greatly appreciate the support and encouragement provided by my family, I couldn't have done this work without their help.

Finally, I owe my thanks and gratitude to every one who participated directly or indirectly in this work.

TABLE OF CONTENT

ACKNOWLEDGES	I
TABLE OF CONTENTS	II
LIST OF TABLES	IV
LIST OF FIGURES	V
LIST OF ABBREVIATIONS	VI
ABSTRACT	VII
1-INTRODUCTION AND OBJECTIVES	1
1.1. INTRODUCTION	1
1.2. OBJECTIVES OF DISSERTATION	3
2-LITERATURE REVIEW	4
2.1. Biochemistry	4
2.1.1. The Generation of Biochemical energy	4
2.1.2. Energy and Biochemical Reactions	5
2.1.3. Electrochemistry	6
2.2. Wastewater	7
2.2.1. Introduction:	7
2.2.2. Carbohydrates:	8
2.2.1. a. Glucose:	9
2.2.1 h. Sucrose:	9

2.2.1.c. Starch:	9
2.2.3. Industrial Wastewater	9
2.2.3.a. Benzene:	9
2.2.3.b. Phenols:	10
2.2.4. Domestic Wastewater	10
2.2.5. Bioremediation	13
2.2.6. Biological Wastewater Treatment	14
2.2.6.a. Suspended Growth Processes:	14
2.2.6.b. Attached Growth Processes:	14
2.3. Microbial Fuel cells	14
2.3.1. Introduction	14
2.3.2. History of Microbial Fuel Cells	15
2.3.3. Bioelectricity Generation Using Microbial Fuel Cell	15
2.3.4. Mechanisms of Electron Transfer	17
2.3.5. Mediators	18
2.3.6. Community Analysis	19
2.3.7. Materials	19
2.3.7.a. Anode Material	20
2.3.7.b. Membranes and Separators	20
2.3.7.c. Cathode Materials	21
2.3.8. Various Configurations for MFC	22
2.3.8.a. Single Chamber Air-Cathode System	22
2.3.8.b. Two-Chamber Air-Cathode System	23
2.3.8 c. Tubular Single Chamber Air-Cathode System	24

2.3.8.d. Flat Plate System	24
2.3.8.e. Aqueous Cathode System Using Dissolved Oxygen	25
2.3.8.f. Tubular Packed Bed System	29
2.3.9. MFCs For Wastewater Treatment	32
2.3.9.a. Process Trains for wastewater treatment plants	32
2.3.9.b. Replacement of the Biological Treatment Reactor with MFCs	35
2.3.9.c. Overview on Recent Researches About Using MFCs	36
2.3.10. Reactor Scale Up	38
KPERIMENTAL WORK	39
3.1. MFC setup and operating procedures	39
3.2. Analysis	51
ESULTS AND DISCUSSIONS	52
4.1. Effect of the three different configurations on the performance of the MFC	
used to treat synthetic wastewater	52
4.2. Effect of bacterial adhesion to the anode electrode on the performance of	
the MFC used to treat synthetic wastewater	57
4.3. Effect of increasing the surface area of the anode electrode in an MFC	
	62
	68
	70
	70
4.6. Performance of single chamber MFC used to treat sucrose-based synthetic	.
	2.3.8.e. Aqueous Cathode System Using Dissolved Oxygen

4.7. Performance of single chamber MFC used to treat soluble starch-based	
synthetic wastewater	78
4.8. Performance of single-chamber MFC used to treat primary settled	
domestic wastewater at various pH values	82
4.9. Performance of single-chamber MFC used to treat phenol-based synthetic	02
wastewater	86
4.10. Performance of single chamber MFC used to treat Benzene-based	
synthetic wastewater	90
4.11. Coulombic efficiencies obtained from the experiments	94
5-CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS	96
5.1. CONCLUSIONS	96
5.2. RECOMMENDATIONS FOR FURTHER WORK	97
REFERENCES	98

List of Tables

Table 3.1 - Specifications of the MFCs used in this study	43
Table 3.2 - Properties of the Activated Alumina	44
Table 3.3 - Properties of the Extruded Activated Carbon	44
Table 3.4 - Properties of the Granular Activated Carbon	44
Table 4.1 - Comparison between costs in case of anode electrode without immersion	
and in case of anode electrode pre-immersed in microbial solution	61
Table 4.2 - Power densities reported in literature versus those obtained in this	
study	67

List of Figures

Fig.2.1: Schematic of the basic components of a microbial fuel cell
Fig.2.2 : Operating principles of a MFC
Fig. 2.3: Single chamber air-cathode
Fig.2.4: Two-chamber, air-cathode cube type MFC
Fig.2.5: Single-chamber air-cathode MFC with a cathode tube concentric with
eight graphite anodes in an acrylic tube casing
Fig.2.6: Flat-plate MFC that has a CEM clamped between the two electrodes, with
the plates drilled to contain a serpentine channel to allow flow of wastewater
(WW) and air on opposite sides of the electrodes
Fig.2.7: Different H-type reactor MFCs
Fig.2.8: Two-chamber MFC used to produce up to 4.1 W/m2 (normalized to anode
surface area) with ferricyanide as a catholyte
Fig.2.9: H-type MFC using permanganate as the electron acceptor in the cathode
chamber. (A) Schematic, (B) Photograph
Fig.2.10: Two-chamber "brushing" reactor developed by You et al. (2006) that
used permanganate as the catholyte. (A) Schematic, (B) Photograph
Fig.2.11: Continuous-flow tubular reactors developed by (A) Jang et al. (2004),
and (B) Moon et al. (2005) for electricity generation
Fig.2.12: Two different tubular upflow reactor designs using ferricyanide
cathodes. (A) Schematic and (B) photograph of an upflow system with the reactor
packed with reticulated vitreous carbon (RVC), with the CEM separating the two
chambers. (C) Schematic of a reactor packed with granular activated carbon
(GAC) with a tube made of a CEM and packed with GAC, that contains a
ferricyanide solution
Fig. 2.13: Process flow train for a typical domestic wastewater treatment plant 33
Fig.2.14: Biological treatment process consisting of a bioreactor and secondary
clarifier. (A) Activated sludge process with aeration basin, sludge recycle, and

waste sludge lines; (B) Trickling filter process consisting of biotower, solids	
contact tank, biotower effluent recycle and sludge recycle lines	1
Fig.2.15: Flow diagrams for using an MFC reactor as the biological treatment	
process. (A) A conventional treatment train with a downstream solids contact tank,	
sludge recycle line, and clarifier. (B) Combined with a MBR using the MFC as a	
pretreatment method to provide power for the MBR reactor	5
Fig. 3.1 - Dual chamber microbial fuel cell (DC+): a) scheme, b) photo)
Fig. 3.2 - Single chamber air cathode microbial fuel cell with a PEM (SC+): a)	
scheme, b) photo	1
Fig. 3.3 - Single chamber air cathode microbial fuel cell without a PEM: a)	
Scheme of SC-, b) photo of SC-, c)Scheme of AASC-, d) Scheme of ACSC-, and	
e) Scheme of GCSC- 42	2
Fig. 3.4: Electrode	5
Fig. 3.5: Magnetic stirrer	5
Fig. 3.6: Magnetic stirrer bar	5
Fig. 3.7: Data acquisition system	7
Fig. 3.8: Proton exchange membrane (Nafion 117)	7
Fig. 3.9: Resistors 48	3
Fig. 3.10: Balance	3
Fig. 3.11: Aerator)
Fig. 3.12: Titanium wire)
Fig. 3.13: Hanna instrument multimeter)
Fig. 4.1 - a) Voltage generation over time for a) DC+, b) SC+, and c) SC 53	3
Fig. 4.2 - Power Density over time for DC+, SC+, and SC	1
Fig. 4.3 - COD removal efficiency for DC+, SC+, and SC	5
Fig. 4.4 - a) Anode electrode at the beginning of the experiment under a SEM	
(X8000), b) Anode electrode at the end of the experiment in DC+ under	
SEM(X8000), c) Anode electrode at the end of the experiment in SC+ under a	
SEM (X8000), d) Anode electrode at the end of the experiment in SC- under SEM	
(X8000)	5
Fig. 4.5 - Voltage over time for SC- with/without the immersion of the anode	

electrode
Fig. 4.6 - Power density over time for SC- with/without the immersion of the
anode electrode
Fig. 4.7 - COD removal efficiency over time for SC- with/out the immersion of the
anode electrode
Fig. 4.8 - AFM images a) anode electrode before immersion in the microbia
solution, b) anode electrode after immersion in the microbial solution for one week
Fig. 4.9 - Voltage generation over time for the SC- with only the anode electrode
with the anode electrode and activated alumina, with the anode electrode and
extruded activated carbon, and with the anode electrode and granular activated
carbon
Fig. 4.10 - Power density over time for the SC- with only the anode electrode, with
the anode electrode and activated alumina, with the anode electrode and extruded
activated carbon, and with the anode electrode and granular activated carbon
Fig. 4.11 - COD removal efficiency over time for the SC- with only the anode
electrode, with the anode electrode and activated alumina, a with the anode
electrode and extruded activated carbon, and with the anode electrode and granular
activated carbon
Fig.4.12 - Anode electrode under AFM before immersion process
Fig.4.13 - Anode electrode under AFM after immersion in microbial solution
Fig.4.14 - Anode electrode under AFM after immersion in anaerobic sludge
Fig.4.15 - Voltage over time with microbial solution and anaerobic sludge for
glucose-based wastewater
Fig.4.16 - Power density over time with microbial solution and anaerobic sludge
for glucose-based wastewater
Fig.4.17 - COD removal efficiency over time with microbial solution and
anaerobic sludge for glucose-based wastewater
Fig.4.18 - Voltage over time with microbial solution and anaerobic sludge for
sucrose-based wastewater
Fig.4.19 - Power density over time with microbial solution and anaerobic sludge
for sucrose-based wastewaterFig.4.20 - COD removal efficiency over time with

microbial solution and anaerobic sludge for sucrose-based wastewater	76
Fig.4.20 - COD removal efficiency over time with microbial solution and	
anaerobic sludge for sucrose-based wastewater	77
Fig.4.21 - Voltage over time with microbial solution and anaerobic sludge for	
soluble starch-based wastewater	79
Fig.4.22 - Power density over time with microbial solution and anaerobic sludge	
for soluble starch-based wastewater	80
Fig.4.23 - COD removal efficiency over time with microbial solution and	
anaerobic sludge for soluble starch-based wastewater	81
Fig. 4.24 -Voltage over time for primary settled domestic wastewaters at different	
pH values	83
Fig. 4.25 -Power density over time for primary settled domestic wastewaters at	
different pH values	84
Fig. 4.26 -COD removal efficiency over time for primary settled domestic	
wastewaters at different pH values	85
Fig. 4.27 -Voltage over time for phenol-based wastewater	87
Fig. 4.28 -Power density over time for phenol-based wastewater	88
Fig. 4.29 -COD removal efficiency over time for phenol-based wastewater	89
Fig. 4.30 -Voltage over time for benzene-based wastewater	91
Fig. 4.31 -Power density over time for benzene-based wastewater	92
Fig. 4.32 -COD removal efficiency over time forbenzene-based wastewater	93
Fig.4.33 -Coulombic efficiencies for primary settled domestic wastewater, phenol-	
hased wastewater and benzene-based wastewater	95

ABSTRACT

This study shows the effects of various conditions on performance of microbial fuel cells (MFCs) used to treat wastewater. The conditions included the following: three different configurations (dual chamber MFC with proton exchange membrane (PEM), single chamber MFC with PEM, and single chamber MFC without PEM); bacterial adhesion; and increasing the anode surface area by using activated alumina, extruded activated carbon and granular activated carbon. The maximum voltage production, power density, and COD removal values were 28mV, 0.46 mW/m², and 68.8% respectively in case of dual chamber MFC with PEM; 3 mV, 0.0053 mW/m², and 54.5% respectively in case of single chamber MFC with PEM; and 78 mV, 10.77 mW/m², and 83%, respectively in case of single chamber MFC without PEM. The voltage generation, power density, and COD removal increased to 351 mV, 218 mW/m², and 98.7 %, respectively, when using an anode electrode that was immersed in the microbial solution for one week beforehand in the single chamber MFC without PEM. The voltage generation and power density improved to 420 mV, and 312 mW/m², respectively, after increasing the anode area through with 170 gm activated alumina, but no improvement was observed when using extruded activated carbon or granular activated carbon under the same conditions. Then the performance of single chamber membrane less microbial fuel cells used to treat three different carbohydrate synthetic wastewaters was investigated. The three synthetic wastewaters contained glucose, sucrose, and soluble starch respectively. Two different inocula were used: microbial solution containing different species of microorganisms, and anaerobic sludge. Results showed that the highest values of voltage, power densities and COD removal efficiencies were obtained in case of microbial fuel cells fed with glucosebased synthetic wastewater, and were found to be 351 mV, 218 mW/m², and 98.8 % respectively in case of microbial solution, and were found to be 508 mV, 456.8 mW/m², and 94.3 % respectively in case of anaerobic sludge. In all experiments, the values of voltage and power densities obtained in case of anaerobic sludge were higher than those obtained in case of microbial solution, while the values of COD removal efficiencies obtained in case of anaerobic sludge were less than those obtained in case of microbial solution. The study proved that the voltage generation, power densities, and COD removal efficiencies were inversely proportional to the complexity of carbohydrate used in single chamber microbial fuel cells. After that, the performance of a single-chamber microbial fuel cell (MFC) with various substrates was investigated. These substrates were primary settled domestic wastewater at pH = 6, primary settled domestic wastewater at pH = 7.2, primary settled domestic wastewater at pH = 8, phenol-based wastewater, and benzene-based wastewater. Electricity was successfully generated when these substrates were used as fuel in single-chamber MFCs inoculated with anaerobic sludge. The maximum voltages and power densities were 74 mV and 9.7 mW/m² for primary settled domestic wastewater at pH = 6, respectively; 135 mV and 32.3 mW/m² for primary settled domestic wastewater at pH = 7.2, respectively; 150 mV and 39.8 mW/m² for primary settled domestic wastewater at pH = 8, respectively; 58 mV and 5.95 mW/m² for phenol-based wastewater, respectively; and 106 mV and 19.9 mW/m² for benzene-based wastewater, respectively. The removal efficiencies for chemical oxygen demand (COD) and coulombic efficiencies were 78.2

% and 35.3 % for primary settled domestic wastewater at pH = 6, respectively; 85.1 % and 55.4 % for primary settled domestic wastewater at pH = 7.2, respectively; 80.8% and 72.9 % for primary settled domestic wastewater at pH = 8, respectively; 58.9 % and 15.1 % for phenol-based wastewater, respectively; and 73 % and 25.7 % for benzene-based wastewater, respectively. The highest voltage production, power density and COD removal were obtained using primary settled domestic wastewater, whereas the lowest values were obtained using phenol-based wastewater. The performance of the MFC was enhanced by increasing the influent pH of the primary settled domestic wastewater. The lowest coulombic efficiencies were obtained from phenol-based wastewater and benzene-based wastewater, which indicated that electrogenic bacteria were not the primary microorganisms responsible for the biodegradation of phenol and benzene.

Key words: Microbial Fuel Cells; Configurations; Bacterial Adhesion; Anaerobic Sludge; Carbohydrates; Benzene; Domestic Wastewater; Phenol