

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

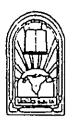
نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %


ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

TANTA UNIVERSITY FACULTY OF ENGINEERING

ENGINEERING CHARACTERISTICS OF CENTRAL DELTA CLAY

Thesis submitted for the degree of Doctor of Philosophy in Civil Engineering

In the field of Soil Mechanics and Foundations

BY

Eng. ASHRAF KAMAL NAZIR BEKHIT

Supervised by

Prof. Mohamed M. Bahloul

Prof. Eng of Soil Mechanics and Foundations

Faculty of Engineering

Tanta University

Dr. Mohamed A. Sakr

Lecturer of Soil Mechanics and

and Foundations Faculty of Engineering

Tanta University

Prof. Osama M. El Shafee

Assistant. Prof. of Soil Mechanics

and Foundations

Faculty of Engineering

Alexandria University

Dr. Mohamed S. El-Shanawany

Lecturer of Soil Mechanics

and Foundations

Faculty of Engineering

Tanta University

M- FL Shanau

2002

EXAMINERS

Prof. Dr. Magda M. Abdel Rahman (external examiner)
Professor of Soil Mechanics and Foundation Engineering,
Faculty of Engineering, Cairo University.

Prof. Dr. Mahmoud A. Mahmoud (external examiner)
Professor of Soil Mechanics and Foundation Engineering,
Faculty of Engineering, Alexandria University.

Prof. Dr. Mohamed M. Bahloul

Prof. Dr. Mohamed M. Bahloul (supervisor)

Professor of Soil Mechanics and Foundation Engineering,
Faculty of Engineering, Tanta University.

ACKNOWLEDGMENT

I would like to thank many people, without whom this research would never has been completed. I indebted to Professor Dr. Mohamed Mahmoud Bahloul, Faculty of Engineering Tanta University, for his excellent supervision and valuable suggestions during every stage of this investigation. Also I wish to express my great gratitude to Pofessor Osama Mostafa El Shafee, Faculty of Engineering Alexandria University for his excellent advises and discussions during the whole stages in this investigation. Also I would like to thank Dr. Mohamed A. Sakr and Dr. Mohamed S. El-Shanawany, Faculty of Engineering Tanta Universityfor their excellent advises and discussions during this research.

Finally I dedicated this thesis work—the spirit of my mother, also I dedicated this work to my daughter, Mariam and my wife.

TABLE OF CONTENTS

Chapter 1: INTRODUCTION	. 1
1.1General	- 1
1.2 Objective of This Study	1
1.3 Organization of Thesis	2
Chapter 2 : LITERATURE REVIEW	4
2.1 Introduction:	4
2.2 History of Nile Delta	4
2.3 Origin of the Nile Delta	6
2.4 Properties of Fine Grain Soil	8
2.4.1 Structure of Clay Minerals	8
2.4.2 Classification of Clay Minerals	9
2.4.2.1 Kaolinite group	9
2.4.2.1.1Sub-group A	9
2.4.2.1.2 Sub-group B	10
2.4.2.2 Mica group	10
2.4.2.2.1 Ilites Group	10
2.4.2.2.2 Montmorillonite Group	11
2.4.2.2.3 Vermiculites Group	11
2.4.2.3 Chlorite group	11
2.4.2.4 Mixed Layer 'interstratified' Clay Minerals	11
2.5 Terzaghi Consolidation Theory	12
2.5.1Coefficient of Consolidation	13
2.5.1.1 Log (time) Method (According to Casagrand)	13
2.5.1.2 Square -Root -Time Method (According to Taylor)	14
2.5.2 Secondary Compression	15
2.6 Factors Effected on the Coefficient of Consolidation	16
2.6.1 Effect of Sample Thickness H (Drainage Path)	17

	2.6.2 Effect of the Load Increment Ratio	!	17
	2.6.3 Effect of Load Duration	4	17
	2.7 Compression Index	. 1	17
	2.8 Rheological Models	t t	20
	2.9 Non Linear Analysis of Stress and Strain in Soils	•	22
	· 2.10 Hyperbolic Method for Consolidation Analysis		23
:		, í , i	
h:	apter 3: EXPERIMENTAL WORK	!	31
	3.1 Introduction	1	31
	3.2 Borings	'	31
	3.3 Soil Profiles and Stratification	: İ	31
	3.4 Geotechnical Laboratory Study	• •	32
	3.4.1 The Tested layers	.	32
	3.4.2 Laboratory Tests	·	32
	3.4.3 Plasticity of studied samples	* 4	33
	3.4.4 Activity of studied Clayey layer	 	33
	3.4.5 One Dimensional Consolidation Testes Procedure	. ;	34
	3.4.6 Grain Size Analysis	'	34
	3.4.7 Shear Strength	†	35
	3.4.8 Summary of Laboratory Tests Results	'	35
	3.5 Clay Mineral and Analysis by X-Ray Diffraction		38
	3.5.1 X-Ray Diffraction Analysis	Í	38
	3.5.1.1 Montmorillonite Minerals (Smectite)		39
	3.5.1.2 Illite (Mica) Minerals		39
	3.5.1.3 Kaolinite Minerals	- 1	39
	3.6 Chemical Analysis		41

CHAPTER 4: TEST RESULTS AND DISCUSSION	57
4.1 Introduction	57
4.2 Stress Stain Relationship	57
4.3 Variations of Void Ratio with Vertical Stress	58
4.4 Relationship Between Atterberg Limits	61
4.5 Effect of the Clay Minerals on the Geotechnical Properties	62
for Studied Soil	
4.5.1 Effect of clay Minerals on Water Content of Soil	62
4.5.2 Effect of clay Minerals on the Atterberg Limits of clay	63
4.5.3 Effect of clay Minerals on the Initial Void Ratio	63
4.5.4 Effect of clay Minerals on the Compression Index and	64
Swelling Index	
4.6 Relationship Between the Compression Index, Cc and	65
Vertical Effective pressure	
4.7 Relationship Between the Compression Index, Cc and	65
Soil Consistency (Atterberg Limits and Water content, Wc)	
4.8 Variation of the Compression Index, Cc with Respect to the	67
Unconfined Compressive Stress, qu for the Studied Clay	
4.9 Relationship Between the Initial Void Ratio, eo of Studied	68
Soil and Compression Index., Cc	
4.10 Normalized Relationship Between the Initial Water content, Wc	69
and the Compression Index, Cc	
4.11 Variation in Coefficient of Consolidation under the Applied stress	69
CHAPTER 5 : PREDICTION OF 1-D STRAIN OF THE	93
STUDIED OVER CONSOLIDATED	
CLAYEY LAYER	•••
5.1 Introduction	93

	5.2 Model definitions	94
	5.3 Model Adjustment Using Test Results	94
	5.4 Model Validity	95
	5.5 Conclusions	97
CI	HAPETER 6: THEORETICAL STRESS - STRAIN	113
•	BEHAVIOR FOR STUDIED CLAY	•
	6.1 Introduction	113
	6.2 Input of program	.113
	6.2.1 Elements	113
	6.2.2 Nodes	114
	6.2.3 Stress Points	114
	6.3 Material model	114
	6.3.1 Introduction .	114
	6.3.2 Different Models Available	115
	6.3.2.1 Mohr-Coulmb model (MC):	115
	6.3.2.2 Hardening-Soil model (HS):	115
	6.3.2.3 Soft-Soil-Creep model (SSC):	115
	6.4 General Definitions of Stress and Strain	116
	6.4.1 Elastic Strain	118
	6.4.2 The Hardening Soil Model	118
	6.4.2.1 Approximation of hyperbola by the Hardening Soil Model	119
	6.5 Design Chart for the Allowable Bearing Capacity for the Studied	122
	Over Consolidated Layer	
	6.6 Comparison Between the Computed Consolidation Settlement and	123
	Those Calculated using Different equation	
Cl	HAPTER7: SUMMARY AND CONCLUSIONS	139
		•
	7.1 Summary	139
	7.2 Conclusions	140
	7.2 Pagammandations for Future Pagamahas	1.42

List of Figures

Figure	Title	age
Figure (2.1)	Mechanical Model of Consolidation Theory, after Terzahgi (1939)	25
Figure (2.2)	Square Root Time method, After Taylor (1942) for Computing the Time elapsed at 90 % Consolidation.	. 26
Figure (2.3)	Logarithm of Time method, After Casagrand (1940) for Computing the Time elapsed at 50 % Consolidation	26
Figure (2.4)	Determination of the Coefficient of Secondary Consolidation.	27
Figure (2.5)	Determination of the Coefficient of Secondary Consolidation Using the Relationship Between Void Ratio with Time for any Load Increment.	27
Figure (2.6)	Rheolocical Models Used for Characterization of Soil Creep Behavior.	28
Figure (2.7)	Hyperbolic Stress - Strain Curve	29
Figure(2.8)	Transformed Hyperbolic Stress – Strain Curve	29
Figure (2.9) Schematic Representation of Hyperbolic Plot	30
	Locations of the Studied Bore-holes	-43
Figure (3.2)	Soil profile at location (S1)	43
Figure (3.3)	Soil profile at location (S2)	44

Figure		Title .	' I	page
Figure (3.4)	Soil profile at location	(S3)		44
Figure (3.5)	Soil profile at location	(S4)	•	. 45
Figure (3.6)	Soil profile at location	(S5)		45
Figure (3.7)	Soil profile at location	(S6)		46
Figure (3.8)	Soil profile at location	(S7)	•	46
Figure (3.9)	Soil profile at location	(S8)		47
Figure (3.10)	Soil profile at location	(S9)		47
Figure (3.11)	Soil profile at location	(\$10)		48
Figure (3.12)	Soil profile at location	(S11)		48
Figure (3.13)	Soil profile at location	(S12)		49
Figure (3.14) Plasticity Chart for the	Studied area		49
Figure (3.15)	Activity Chart for the	Studied Area		50
Figure (3.16)	The Rang of Grain Siz	e for the Studied Are	a	50
Figure (3.17)	X-Ray Diffraction for 2.0 meters at Location	• ,	nallow Depth ,	51
Figure (3.18) X-Ray Diffraction for 6.0 meters at Location 8	• •	eep Depth ,	52

Figure	Title	page
Figure (3.19)	X-Ray Diffraction for Tested Sample, for deep Depth,	53
Figure (3.20)	6.0 meters at Location S3X-Ray Diffraction for Tested Sample, for deep Depth ,6.0 meters at Location S4	54
Figure (3.21)	X-Ray Diffraction for Tested Sample, for Shallow Depth, 2.0 meters at Location S5	55
Figure (3.22	X-Ray Diffraction for Tested Sample, for deep Depth ,6.0 meters at Location S6	56
Figure (4.1)	Vertical Effective Stress Versus Vertical Strain for Bore-Holes S1,S2,S3 and S4	72
Figure (4.2)	Vertical Effective Stress Versus Vertical strain for Bore-Holes S5,S6,S7 and S8	73
Figure (4.3)	Vertical Effective Stress Versus Vertical Strain for Bore-holes S9,S10,S11and S12	. 74
Figure (4.4)	Void Ratio Versus Effective Stress for Tested Samples Obtained from Bore-holes S1,S2,S3 and S4	75
Figure (4.5)	Void Ratio Versus Effective Stress for Tested Samples Obtained from Bore-boles S5,S6,S7 and S8	76
Figure (4.6)	Voids Ratio Versus Effective Stress for Tested Samples Obtained from Bore-holes S9, S10, S11 and S10	77
Figure (4.7)	Relationship Between Change in Void Ratio e versus Vertical	78