

Experience with cardiac catheterization of congenital heart disease in Cairo University Children Hospital

Thesis
Submitted For Fulfillment For The
Master Degree in Paediatrics

By

Mohamed Ali Abo Saif Ali

(M.B.B.CH)

Very Good Honors

supervised by

Prof. Dr / Faten Mohammed Abd El Aziz

Professor of Pediatrics, Cairo University

Prof. Dr /Aya Mohammed Fattouh

Assistant Professor of Pediatrics, Cairo University

Dr/ Rodina Sobhi Mohammed

Lecturer of Pediatrics, Cairo University

Faculty of Medicine Cairo University

Content

Acknoidgment	1
List of abbreviations	2-5
List of tables	6
List of figures	7-9
Introduction& aim of the work	10
Review of literature	11-73
Introduction and historical review of cardiac catheterization	11-13
Anesthesia and sedation of pediatric cardiac catheterization	14-20
 Diagnostic cardiac Catheterization 	21-28
Interventional Cardiac Catheterization	29-63
Complications of pediatric cardiac	
catheterization	64-73
Patients and methodology	74-76
Results	77-101
Disscusion	102-110
Conclosion& recommendations	111-113
English summary	114-116
References	117-135
Arabic summary	136

Acknowledgment

Foremost, I want to offer the endeavor to our God Almighty, for the wisdom he bestowed upon me, the strength peace of my mind and good health in order to finish this research.

This thesis becomes a reality with the kind support of many individuals; I would like to extend my thanks to all of them.

I would like to express my special gratitude and thanks to my advisors, D. Faten Abd ElAzeez, D Aya Fattoh and D Rodina Sobhy, for imparting by their knowledge and expertise in this study.

I would like to express my gratitude towards my family for the encouragement which helped me in completion of this paper and my friends who supporting me esp. D. Mohamed Abd Alfattah.

I am highly indebted to colleges of the cardiac catheter lab of Cairo university – children hospital for their guidance and constant supervision as well as for providing necessary information regarding this research and also for their support in completion this endeavor.

ACC/	American College of Cardiology/American Heart
AHA/HRS	Association/Heart Rhythm Society
ADO	Amplatzer Duct Occlude
AP	Aorto Pulmonary
AS	Aortic stenosis
ASD	Atrial septal defect
ASO	Amplatzer Septal Occlude
AV	Atrio Ventrivular
AVC	Atrio Ventricular Canal
AVF	Arterio Venous Fistula
AVNRT	Atrio Ventricular Reenterant Technology
CAVC	Common Atrio Ventricular Canal
CAVF	Coronary Arterio Venous Fistula
CHD	Congenital Heart Disease
COA	Coarcotation Of Aorta
СТ	Computed Tomography
DDIR	Dual Paced ,Dual Sensed, Inhibited, Rate Responsive
DILV	Double inlet right ventricle

DORV	Double outlet right ventricle
DPT	Demerol Phenergan, and Thorazine
D-TGA	Dextro-Transposition Of Great Arteries
EPS	Electro Physiological Studies
FDA	Food and Drug Administration
GA	General Anaesthesia
HLHS	Hypoplastic Left Heart Syndrome
HLHS	Hypoplastic left heart syndrome
HTN	Hypertension
IART	Intra-atrial Reentry Tachycardia
ICD	Internal Cardiovertor Defibriliator
IVC	Inferior vena cava
LPA	Left pulmonary artery
L-TGA	Levo- Transposition Of Great Arteries
LVAD	Left Ventricle Assisted Device
MAPCAs	Major Aorto- Pulmonary Collateral Arteries
MBT	Modified Blalock Taussing
MRA	Magnetic Resonance Angiography

Magnetic Resonance Imaging
Mitral stenosis
Muscular Ventricular Septal Defect
Pulmonary atresia
Pulmonary artery bandage
Partial Anomalies Pulmonary Venous Return
Patent Ductus Arteriosus
Pulmonary Hyper Tension
Pace Maker
Peri Memberanous Ventricular Septal Defect
Perimemberanous Ventricular Septal Defect
Pulmonary Stenosis
Radio Frequency
Right Pulmonary Artery
Right Ventricle
Right Ventricular Outflow Tract
Status/Post
Superior Vena Cava
Systemic Venous Return

list of abbreviations

TAPVR	Total Anomalies Pulmonary Venous Return
TEE	Trans Esophageal Echocardiography
TOF	Tetralogy Of Fallot
TPV	Transcatheter Pulmonary Valve
TVR	Transcatheter Valve Replacement
VSD	Ventricular Septal Defect
VT	Ventricular Tachycardia
VVIR	Ventr Paced, Ventricular Sensed ,Initiated, Rate Responsive

Table(1)	Comparison between types of catheters (interventional and	77
	diagnostic) which were done in different study years	
Table(2)	Comparison between genders among different study years	78
	follow ups.	
Table(3)	Comparison between age groups among different study years	79
	follow ups	
Table(4)	Shows Frequency of diagnostic types of catheters done in	84
	2012.	
Table(5)	Shows Frequency of diagnostic types of catheters done in	85
	2013.	
Table(6)	Shows Frequency of diagnostic types of catheters done in	86
	2014.	
Table(7)	Shows Frequency of types of interventional catheters done in	89
	2012.	
Table(8)	Shows Frequency of types of interventional catheters done in	90
	2013.	
Table(9)	Shows Frequency of types of interventional catheters done in	91
	2014.	
Table(10)	shows Frequency of diagnostic types of catheters done for	92
	different age groups.	
Table(11)	Frequency of Interventional types of catheters done for	93
	different age groups.	
Table(12)	shows the success rate of different types of interventional	94
	catheters / each age group.	
Table(13)	Failure rate in different types of interventional catheters done	95
	in study years (2012:2014).	
Table(14)	Failure rate of different stent types done in study years	97
	(2012:2014)	
Table(15)	The success rate of different types of interventions from	97
	2012to 2014.	
Table(16)	Comparison between types of catheters (interventional and	98
	diagnostic) had done in 2012, and 2013.	
Table(17)	Comparison between types of catheters (interventional and	98
	diagnostic) done in 2013, and 2014	
Table(18)	Comparison between types of catheters (interventional and	98
	diagnostic) done in 2012, and 2014.	
Table(19)	Distribution of frequency of catheters/months (diagnostic	99
	and interventional) done in different study years.	
Table(20)	Distribution of interventional catheters done in different	100
	study years.	
Table(21)	Distribution of diagnostic catheters done in different study	101
	years.	

Figure (1)	Catheters and guide wires	34
Figure (2)	Showing balloon dilatation of coarcotation	37
Figure(3)	Angiographic pictures of stent insertion for re- coarctation	39
Figure(4)	An Amplatzer Septal Occluder device for closure of atrial septal defects.	41
Figure(5)	Demonstrates steps of closure of a large ASD using ASO under intracardiac echocardiography guidance	41
Figure(6)	TEE images for perventricular closure of muscular VSD	44
Figure(7)	Typical closure devices for VSD.	45
Fig(8)	Descending aortogram showing the Amplatzer ADO in the PDA position without shunt before its release.	46
Figure(9)	Descending aotogram showing the Nit occlud PFM in the PDA position without shunt before its release.	46
Figure(10)	Cine Fluoroscopic Images in the Lateral Projection in 6.5-Year-Old Female Child with a PDA.	47
Fig (11)	Shows a child's COA that was successfully treated with a stent placement.	51
Fig.(12)	Angiographic pictures of radiofrequency perforation for pulmonary atresia	55
Figure(13)	Melody valve implantation	59

Figure(14)	Biplane cinangiographry in catheter lab Cairo	75
	university- children hospital (PHILIPS)	
Figure(15)	Biplane cinangiographry in catheter lab Cairo	75
	university- children hospital(SIEMENS)	
Figure(16)	Comparison between types of catheters (interventional	77
	and diagnostic) which were done in different study	
	years.	
Figure(17)	Comparison between genders among different study	78
	years for interventional catheters	
Figure(18)	Comparison between genders among different study	78
	years for diagnostic catheters	
Figure(19)	Diagnostic catheters among age groups in columns	80
Figure(20)	Diagnostic catheters among age groups in curves.	80
Figure(21)	Interventional catheters among different age groups in	81
	columns.	
Figure(22)	Interventional catheters among different age groups in	81
	curves.	
Figure(23)	Frequency of types of diagnostic catheters done in	82
	2012.	
Figure(24)	frequency of types of diagnostic catheters done in	82
	2013	

Figure(25)	frequency of types of diagnostic catheters done in 2014	83
Figure(26)	Most frequent interventional catheters in 2012.	87
Figure(27)	Most frequent interventional catheters in 2013.	88
Figure(28)	Most frequent interventional catheters in 2014.	88
Figure(29)	Failure rate in types of f interventional types of catheters	96
Figure(30)	Distribution of frequency of catheters/months (diagnostic and interventional) done in different study years.	99
Figure(31)	Distribution of interventional catheters done in different study years.	100
Figure(32)	Distribution of diagnostic catheters done in different study years.	101

Introduction, aim of the work.

Cardiac catheterization in pediatrics and for congenital heart disease encompasses a wide range of both diagnostic and therapeutic procedure types. (Bergersen et al, 2011) In recent years, catheterization has shifted from a diagnostic tool to an interventional one still; non interventional pediatric cardiac catheterization continues to have an important role in the assessment and treatment of patients with congenital heart diseases. (Joshua et al, 2005) Despite the considerable improvement in catheterization techniques, equipment and skills of the interventionist, the risks of catheterization continue to complicate these procedures. (Mehta et al, 2008)

The aim of this work is to analyse our results in the cardiac catheterization laboratory and analysis of the types, numbers and oucome of the performed cardiac catheter procedures.

Introduction and historical review of cardiac catheterization.

Pediatric cardiac catheterization is a unique specialty encompassing a wide range of diagnostic and therapeutic techniques applied to a diverse group of congenital and acquired cardiovascular disorders. (*Robert 2005*)

Cardiac catheterizations usually include right (and left) heart catheterization, quantification of cardiac index, multichamber oximetry assessments, calculations of left-to-right and right-to-left shunts, and pulmonary and systemic vascular resistance. Cardiac index may be measured by thermodilution, but because of the presence of shunts, the Fick principle is more commonly employed, and oxygen consumption is usually assumed. Because of dramatic growth-related changes in pediatric body surface area and the need for comparative hemodynamic data, flow and resistance values are usually indexed for body surface area. (*hijazi* 2008)

The incidence of congenital heart disease(CHD) is less than 1%. Overall, three out of 1000 live births will have congenital heart disease that will require an immediate intervention including cardiac catheterization and surgery. Cardiac catheterization should be used in any circumstance in which the anatomy of the heart of a child with congenital heart disease is inadequately defined by non-invasive means. On some occasions particularly in very complex lesions, more specific details about the anatomy or hemodynamic features are necessary. Pediatric cardiac catheterization is a safe and effective procedure used to obtain detailed information about heart anatomy as well as to repair the heart without surgery. Advances in non-invasive imaging have allowed cardiac catheterization to become increasingly a catheter based therapeutic option rather than a diagnostic tool. (*Bonnet and Greffier*, 2013)

Interventional cardiac catheterization describes procedures where cardiac catheters are used to modify, palliate, or treat congenital or acquired cardiac disease (*Robert et al, 2010*)Interventional pediatric cardiac catheterization has evolved to include a variety of procedures, including the closure of atrial septal defect, the closure of ventricular septal defect (VSD), the closure of patent ductus arteriosus, the creation of holes such as septostomy, angioplasty, valvuloplasty, the placement of stents to open up narrowed vessels, the embolization of vessels such as collateral vessels or more recently, the replacement of heart valves. (*Legendre and Boudjemline 2011*)

Pediatric cardiac catheterization is not without risk to the patient. In the last decade, there have been significant improvements in technology and equipment. Nonetheless, the risk of complications remains and these risks adversely affect outcomes (*Ovaert et al*, 2011)

History of cardiac catheterization

Cardiology as a medical speciality was limited, mainly, to internists. When Robert Gross ligated a patent ductus in 1938, pediatric cardiology, as a discipline, was born. Physiologic studies, angiography, and the development of extracorporeal circulation allowed congenital cardiac lesions previously considered a curiosity to be diagnosed and treated successfully. By 1961, pediatric cardiology became the first subspecialty board in pediatrics. (*Ovaert et al, 2011*)

Forssman in 1929 passed a catheter into his own heart, but it was not until 1932 that Richardson and Cournand began performing cardiac catheterizations in humans. With the advent of surgery for cardiac defects, it became essential that correct diagnoses be made preoperatively. In 1949, Cournand and his associates in New York, working with Janet Baldwin, a pediatric cardiologist, reported on cardiac