EARLY DETECTION OF DIABETIC CARDIOMYOPATHY: USEFULNESS OF TISSUE DOPPLER IMAGING

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Internal Medicine

By

Rasha Mohammed Abdel Samie' Abdella

(M.B.B.Ch., M.Sc)

Supervised by

Dr. RAWYA AHMED KHATER

Professor of Internal Medicine and Endocrinology Faculty of Medicine, Cairo University

Dr. NEHAL HAMDY ELSAID

Professor of Internal Medicine Faculty of Medicine, Cairo University

Dr. ZEINAB ATTIA ASHOUR

Professor of Cardiology
Faculty of Medicine, Cairo University

Dr. DAWLAT SALEM

Professor of Biochemistry
Faculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2010

Abstract

Diabetes is a risk factor in 10-30 % of patients who develop heart failure. In type II diabetes, isolated abnormalities of diastolic relaxation in the absence of symptoms or signs of heart disease suggest a diagnosis of 'diabetic cardiomyopathy'. This is thought to result from microangiopathy, deposition of collagen, decreased expression/activation of the potassium channel and sodium pump and decreased myofilament calcium (Ca+2) sensitivity.

Diastolic dysfunction in diabetic patients is believed to represent an earlier stage in the natural history of diabetic cardiomyopathy (Cosson et al., 2003), and its timely recognition may help to avoid or significantly delay the onset of CHF.

Previously published reports about the prevalence of LV diastolic dysfunction in diabetes are conflicting, mainly because of the confounding effect of systemic hypertension and CAD that frequently coexist with diabetes and have significant effects on cardiac diastolic physiology.

Key Words:

Definition and Classification Diabetes, Diabetes and Cardiovascular Disease, Diabetic Cardiomyopathy, Physiology of Diastole, Tissue Doppler Imaging (TDI)

Acknowledgement

I would like to express my profound gratitude to Dr. Rawya Ahmed Khater, Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Cairo University for her continuous guidance, supervision and encouragement.

I am immensely grateful and deeply indebted to Dr. Nehal Hamdy El Said, Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Cairo University for her great assistance and sincere help.

I am profoundly grateful to Dr. Zeinab Attia Ashour, Trofessor of Cardiology, Faculty of Medicine, Cairo University for her continuous encouragement and without whose assistance the accomplishment of this work would have not been possible.

I am greatly thankful to Dr. Dawlat Salem El Sayed,

Professor of Biochemistry, Faculty of Medicine, Cairo

University, for her assistance and continuous support.

I truly appreciate the sincere help of my colleague Heba Mostafa EI-Deeb, Assistant Lecturer of Cardiology, Cairo University.

I am deeply indebted to my family for their continuous support and encouragement.

Contents

	Page
Acknowledgement	
List of Abbreviations	
List of Figures	
List of Tables.	
Introduction and Aim of the Work	1
Review of Literature:	
Definition and Classification Diabetes	3
Diabetes and Cardiovascular Disease	13
Diabetic Cardiomyopathy	39
Physiology of Diastole	73
• Tissue Doppler Imaging (TDI)	103
Patients and Methods	135
Results	140
Discussion	189
Conclusion	215
Recommendation	217
Summary	218
References	222
Arabic Summary	

List of Abbreviations

A	Late diastolic transmitral velocity
Aa	Late diastolic mitral annular wave
Ac	Aortic valve closure
ACC	Acetyl coenzyme A carboxylase
ACCORD	Action to Control Cardiovascular Risk in Diabetes
ACE	Angiotensin converting enzyme
ACoA	Acetyl-co enzyme A
ACS	Acute Coronary Syndrome
ADP	Adenosine diphosphate
Adur	Duration of A wave
ADVANCE	Action in Diabetes and Vascular Disease
AGE	Advanced glycation endproducts
AM	Myocardial velocities during atrial systole
AOP	Aortic pressure
Ao root	Aortic pressure Aortic root
Ar	Atrial retrograde flow velocity
AR	Atrial reversal (retrograde flow)
ARB	Angiotensin Receptor Blocker
AR du	Duration of atrial reversal velocity
ASE	American Society of Echocardiography
ATII	Angiotensin II
ATP	Adenosine triphosphate
AVC	Aortic valve closed
AVO	Aortic valve open
BB	Beta blockers
BMI	Body mass index
BNP	Brain Natrivretic peptide
BSA	Body Surface Area
Ca2+	Calcium
CAD	Coronary artery disease
CAN	Cardiac autonomic neuropathy
COPERNICUS	Carvedilol Prospective Randomized Cumulative Survival
CAVI	Cardio-ankle vascular index
CE	Cardiac efficiency
CFR	Coronary flow reserve
cGMP	Cyclic guanosine monophosphate
CHARM	Candesartan in Heart Failure to Affect Reduction in
	Morbidity and Mortality
CHD	Coronary Heart Disease
CPT1	Carnitine palmitoyl-transferase l
CRP	C-reactive protein
CV	Cardiovascular
CVD	Cardiovascular Disease
CVD	Cardiovascular Disease

CW	Continuous wave
D	Peak anterograde diastolic velocity
2D	2-Dimensional
DAG	Diacyl glycerol
DBP	Diastolic blood pressure
Db/db mice	(Which have mutations that impair leptin signaling
DD	Diastolic dysfunction
DECODE	Diabetes Epidemiology Collaborative Analysis of Diagnostic
	Criteria in Europe
DFP	Diastolic filling pressures
DM	Diabetes Mellitus
Dp/dt	First derivative of LVP
DP/dt min	Peqk rate of LVP fall.
DP/DV	Slope of a tangent drawn to the curve at that point.
DT	Deceleration time
Е	Early diastolic transmitral velocity
e'	Early diastolic mitral annulus velocity
Ea or EA	Early diastolic mitral annular wave
ECG	Electrocardiogram
ECM	Extracellular matrix
EDPVR	End diastolic pressure volume relationship.
EF	Ejection Fraction
ELITE	Evaluation of Losartan in the Elderly
EM	Myocardial velocities during early filling
ESRD	End Stage Renal Disease
ESPVR ET-1	End systolic pressure volume relationship. Endothelin-1
FA	
FATP1	Fatty acid. fatty acid transporter 1
FFA	Free fatty acids
FP	Filling pressures
FPG	Fasting Plasma Glucose
FS	Fraction Shortening of the left ventricle
GAD	Glutamic acid decarboxylase
GADPH	Glyceraldehyde-3-phosphate dehydrogenase
GDM	Gestational Diabetes Mellitus
GFR	Glomerular Filtration Rate
GLUTs	Glucose Transporters
GO	Fasting blood sugar
HbA1C%	Glycated Haemoglobin
HCM	Hypertrophic cardiomyopathy
HDL	High density Lipoprotein
HF	Heart failure
HNF	Hepatic nuclear transcription factor
HOMA-IR	Homeostasis model assessment of insulin resistance
HOPE study	Heart Outcomes Prevention Evaluation study
HPS	Heart Protection Study

HR	Heart rate
HTN	Hypertension
IFG	Impaired fasting Glucose
IGF-1	Insulin-like growth factor-1
IGT	Impaired Glucose tolerance
IO	Fasting insulin
IPF	Insulin promoter factor
IRP	Isovolumic relaxation period
IRT	Isovolumic relaxation time
IVC	Isovolumic contraction phase
IVR	Isovolumic relaxation
IVRT	Isovolumic relaxation time
IVS(D)	Interventricular septum diastolic dimension
IVS(S)	Interventricular septum systolic dimension
IVST(SWT)	Interventricular septum thickness
Kc	The slope
LA	Left atrium
LAP	Left atrial pressure
LDL	Low density lipoprotein
LV	Left ventricle
LVDD	Left ventricular diastolic dysfunction
LVD(D)	Left ventricular dimension in diastole
LVD(S)	Left ventricular dimension in systole
LVEDP	Left ventricular end diastolic pressure
LVET	Left ventricular ejection time
LVFP	Left ventricular filling pressures
LVH	Left ventricular hypertrophy
LVID	Left ventricular internal dimension
LVMI	Left ventricular mass index
LVP	Left ventricular pressure
LVPW(D)	Left ventricular posterior wall diastolic dimension
MADV	Mitral annular displacement velocity
MCD	Malonyl-coenzyme A decarboxylase
MCoA	Malonyl-coenzyme A
MELAS	Mitochondrial myopathy, encephalopathy, lactic Acidosis and
Syndrome	stroke-like syndrome.
MHC	Myosin Heavy Chain
MI	Myocardial Infarction
MMPs	Matrix metalloproteinases
Mo	Mitral valve opening
MODY	Maturity – onset diabetes of the young.
MR	Mitral regurge
MV	Mitral valve
MVF	Doppler Mitral volve flow velocity
MVG	Mitral velocity gradient
MVO	Mitral valve open
MV'O2	Myocardial oxygen consumption

MVVC	Mitral valve closed
Na+	Sodium
NEFA	Non -esterifed fatty acid
NF-kβ	Nuclear factor kappa β
NGR	Normal glucose regulation
NO	Nitric oxide
NOS1	Nitric oxide synthase-1
NYHA	New York Heart Association
Ob/ob mice	Which lack leptin
OGTT	Oral glucose tolerance test
OPTIMAAL	Optimal Therapy in Myocardial Infarction with the Angiotensin II
	Antagonist Losartan
PA	Pulmonary artery
PAI-1	Plasminogen Activator Inhibitor-1
PARP	Poly (ADP- ribose) polymerase
PCWP	Pulmonary capillary wedge pressure
PDH	Pyruvate dehydrogenase
PDK4	Pyruvate dehydrogenase kinase 4
PGC-1	Peroxisome proliferators activated receptor gamma coactivator-1
PKA	Protein Kinase A
PKG	Protein kinase G
PNF	Pseudonormal left ventricular filling
PP	Postprandial glucose
PPAR α	Peroxisome proliferators activated receptor- ∞
PV	Pulmonary vein.
PV loop	Pressure – volume
PVAR	Pulmonary vein retrograde flow atrial flow reversal
PVD	Pulmonary vein diastolic velocity
PVF	Doppler pulmonary vein flow
PVS	Pulmonary vein systolic velocity
PW	Pulsed-wave
PWD	Pulsed wave Doppler
PWT	Posterior wall thickness
PWTDS	Pulsed-wave tissue Doppler study
RAS	Renin-Angiotensin system
RBC	Red Blood Cells
ROS	Reactive oxygen species
RV	Right ventricular
RVD(D)	Right ventricular dimension in diastole
S	Peak systolic velocity
Sa	Positive systolic wave by TDl or systolic myocardial motion
SERCA	Sarcoplasmic reticulum calcium ATPase pump
SHS	Strong Heart Study
Sm	Peak myocardial systolic velocity
SNS	Sympathetic nervous system
Sod 2	
-	Superoxide dismutase

SR	Sarcoplasmic reticulum
SRI	Strain Rate Imaging
τ	Tau (time constant of isovolumic relaxation)
T	LV relaxation time constant
TD	Tissue Doppler
TE-e'	Time interval between the onset of E and e'
TG	Triglycerides
TGF- <i>β</i> 1	Transforming Growth factor- β
Tn	Troponin
Tn-C	Troponin-C
TNF-∝	Tumor Necrosis factor-∞
TVI	Time velocity integral
TVI	Doppler tissue velocity imaging
TZD	Thiazolidinediones
UKPDS	United Kingdom Prospective Diabetes Study
VADT	Veterans Affairs Diabetes Trial
VEGF	Vascular Endothelial Growth Factor
VALIANT	Valsartan in Acute Myocardial Infarction Trial
Vp	Propagation velocity
WHO	World Health organization

List of Figures

Fig.	Title	Page
1	The metabolic syndrome-dysregulation of adipokines induced by	
	visceral fat accumulation	30
2	Potential contributors to the development of diabetic cardiomyopathy	45
3	Normal trans—mitral-valve spectral Doppler flow pattern. The E-to-A-	
	wave ratio is approximately 1.4 to 1.0 (<i>left panel</i>). Trans–mitral-valve	
	Doppler flow tracing in a patient with mild diastolic dysfunction	
	(abnormal relaxation). The E-to-A-wave ratio is less than 1.0 (right	
	panel)	59
4	Trans-mitral-valve Doppler flow pattern in a patient with severe	
	(restrictive) diastolic dysfunction. The E-to-A-wave ratio is abnormally	
	high, and the A-wave velocity is extremely low	60
5	Diagrams of the basic abnormal trans-mitral Doppler flow velocity	
	patterns corresponding to different grades of LV dysfunction	62
6	Electrical, pressure, flow (Doppler), tissue (Doppler), and volume	
	events during systole and diastole	75
7	Haemodynamic evaluation of diastolic function. <i>Left panel</i> : Analysis	
	includes rate and timing of onset of left ventricular (LV) pressure fall	
	in the cardiac cycle. AoP, LVP, LAP, aortic, left ventricular, and left	
	atrial pressures, respectively; dP/dt, first derivative of LVP; dP/dtmin,	
	peak rate of LVP fall; IR, isovolumetric relaxation. <i>Right panel</i> : LV	
	pressure–volume loops at various preload and afterload levels	84
8	Effects of systolic dysfunction (<i>left panel</i>) and diastolic dysfunction	
	(right panel) on pressure-volume (PV) loops, and end systolic	
	(ESPVR) and end diastolic PV relations (EDPVR)	85
9	Normal transmitral Doppler diastolic flow pattern	88
10	Schematic diagram of the changes in mitral inflow in response to the	
	trans-mitral pressure gradient	89
11	Impaired relaxation pattern. Note that E/A ratio <1 (0.81) and	
	deceleration time (DecT) is prolonged (349 ms). A- late diastolic trans-	0.0
10	mitral velocity, E- early diastolic trans-mitral velocity	90
12	Restrictive filling pattern with an E/A ratio >2 (2.9) and shortened	
	deceleration time (Dec T) (148 ms). A-late diastolic trans-mitral	01
12	velocity, E-early diastolic trans-mitral velocity	91
13	Normal pulmonary veins flow pattern (<i>left panel</i>) and Pulmonary vein	
	velocities with predominant diastolic wave (D) and lower systolic wave	06
1.4	(S) indicating increased left atrial pressure (<i>right panel</i>)	96
14	Trans-mitral Doppler imaging, pulmonary view Doppler imaging	
	corresponding to normal, delayed relaxation, pseudonormal, and	06
15	restrictive filling patterns Eshagerdia graphic elegation of diagnalia function	98
15	Echocardiographic classification of diastolic function	99
16	Tissue Doppler imaging of the mitral annulus. Note that Ea velocity is	
	depressed (< 5cm/s) indicating impaired relaxation Aa- late diastolic mitral annular wave, Ea- early diastolic mitral annular wave	100
	i iiiuai aiiiuiai wave, da- tai iy uiasioiie iiiiuai aiiiiuiai wave	TAA

Fig.	Title	Page
17	A practical approach in evaluation of diastolic function	102
18	Part of a standard 2D apical four chamber view from a subject with	
	suboptimal echo window, with myocardial velocity profiles shown	
	from two discrete points in the lateral wall	106
19	The upper panel illustrates conventional Doppler interrogation of	
	mitral inflow. The lower panel illustrates the 3 basic waveforms of	
	tissue Doppler interrogation: Sa (systolic myocardial motion), Ea (early	
	diastolic motion), and Aa (atrial contraction)	109
20	Tissue Doppler velocity curve in a healthy volunteer. Apical 4-	
	chamber view. The sample volume is positioned in the basal inferior	
	septum. The initial positive excursion represents the isovolaemic	
	contraction phase (IVC), followed by the systole. The negative waves	444
21	represent early (E') and late (A') diastole	111
21	Tissue Doppler (TD) recording from the lateral mitral annulus from a	
	normal subject aged 35 years (<i>left</i>) (e=14 cm/s) and a 58-year-old	
	patient with hypertension, LV hypertrophy, and impaired LV	112
22	relaxation (<i>right</i>) (e= 8 cm/s) Mitral inflow (<i>top</i>), septal (<i>bottom left</i>), and lateral (<i>bottom right</i>)	114
	tissue Doppler signals from a 60-year-old patient with heart failure and	
	normal EF. The E/e' ratio was markedly increased, using e' from either	
	side of the annulus	113
23	Top, A: schematic of the midesophageal four-chamber view with	
	pulsed Doppler imaging sample volume located at the lateral mitral	
	annular wall for TDI assessment of diastolic function. Bottom , B :	
	lateral mitral annular tissue Doppler waveforms for the assessment of	
	LV diastolic function	121
24	TDI profiles corresponding to normal, delayed relaxation,	
	pseudonormal, and restrictive filling patterns. Note that the waves are	
	reversed with transesophageal echocardiography	123
25	Comparison of clinical parameters between diabetics and controls	141
26	Comparison of metabolic parameters between diabetic subjects and	
	control group	142
27	Comparison of fasting insulin levels, HOMA-IR and HbA1C%	- a a
	between diabetics and controls	143
28	Comparison of conventional Doppler indices between diabetic subjects	1 4=
20	and control group	145
29	Comparison of percentages of different trans-mitral Doppler E/A ratios	146
20	within the diabetic and control groups Comparison of TDL control appulse permeters between diabetic	146
30	Comparison of TDI septal annulus parameters between diabetic subjects and control group	147
31	Comparison of percentages of different TDI septal Ea/Aa ratios within	14/
31	the diabetic and control groups	148
32	Comparison of TDI lateral velocities between diabetic subjects and	170
	controls	149
33	Comparison of percentages of different TDI lateral Ea/Aa ratios within	17/
	diabetic and control groups	150
34	Comparison of E/Ea ratio and LV mass index between diabetic and	200
5 - T	comparison of Librarian and Livings mack between diabetic and	

Fig.	Title	Page
	controls	151
35	Comparison of trans-mitral Doppler E/A ratio and TDI septal and	
26	lateral Ea/Aa ratios between diabetics and controls	151
36	Percentage distribution of Group I (with trans-mitral Doppler flow	
	pattern of diastolic dysfunction (E/A ratio <1), 6 (17.1%) out of 35	
	patients) and Group II (with normal LV diastolic function by pulsed trans-mitral Doppler echocardiography) 29 (82.9%) out of 35 patients)	152
37	Percentage distribution of Group IIa (Those who showed normal	132
31	diastolic function by conventional Doppler study but showed diastolic	
	dysfunction by TDI i.e. 18 (62.1%) out of 29 patients) and Group IIb	
	(Those who showed normal diastolic function by both conventional	
	Doppler study and TDI i.e. 11 (37.9%) out of 29 patients)	153
38	Comparison of conventional Doppler mean peak E and A velocities	
	between Group I and Group II	155
39	Comparison of trans-mitral Doppler E/A ratio and TDI septal and	
	lateral Ea/Aa ratios between Group I and Group II	157
40	Comparison of conventional Doppler mean peak E and A velocities	
	between Group I, Group IIa and Group IIb	162
41	Comparison of TDI septal annulus velocities between Group I, Group	4 / 4
12	IIa and Group IIb	164
42	Comparison of TDI lateral annulus velocities between Group I, Group	165
43	IIb, Group IIb Comparison of E/A ratio gental Eg/Ag ratio lateral Eg/Ag ratio	165
43	Comparison of E/A ratio, septal Ea/Aa ratio, lateral Ea/Aa ratio between Group I, Group IIa and Group IIb	166
44	Left panel showing an inverse correlation between E/A ratio and FBS	100
	(p=0.002; r=0.422) and right panel showing an inverse correlation	
	between E/A ratio and HbA1C% (p=0.001; r= -0.469)	167
45	Left panel showing an inverse correlation between E/A ratio and	
	fasting insulin levels (p=0.001; r= -0.422) and <i>right panel</i> showing an	
	inverse correlation between E/A ratio and the HOMA-IR (p< 0.001; r=	
	-0.516)	168
46	Relation between E/A ratio and TDI lateral Ea/Aa ratio (showing a	- د ر
4=	strong positive correlation with p value < 0.001 and r value=0.540)	168
47	Correlation of TDI lateral and septal Ea/Aa ratios to LV mass; showing	181
40	no relation Left name I showing an inverse correlation between sental Fe valueity.	171
48	Left panel showing an inverse correlation between septal Ea velocity and HbA1C% (p= 0.028; r= -0.310) and right panel showing a	
	borderline inverse correlation between septal Ea velocity and the	
	HOMA-IR (p=0.047; r= -0.282)	173
49	Left panel showing an inverse correlation between Septal Ea velocity	2.0
	and LDL-C ($p=0.002$; $r=-0.420$) and right panel showing a positive	
	correlation between septal Ea velocity and HDL-C (p=0.008; r=0.373)	173
50	Left panel showing a positive correlation between septal Aa velocities	
	and fasting insulin levels (p=0.001; r=0.451) and <i>right panel</i> showing a	
	positive correlation between septal Aa velocities and the HOMA-IR	
	(p=0.004; r=0.397)	175

Fig.	Title	Page
51	Relation of Septal Ea velocity(cm/s) and the septal Sa velocity(cm/s),	
	showing a positive correlation between Septal Ea velocity and septal	
	Sa velocity (p=0.008;r=0.371)	175
52	Relationship between septal Ea/Aa ratio and the TDI septal IVRT,	
	showing an inverse correlation (p=0.002; r= -0.321)	177
53	Left panel showing an inverse correlation between TDI septal Ea/Aa	
	ratio and fasting insulin (p=0.005; r= -0.393) and <i>right panel</i> showing	
	too an inverse correlation between septal Ea/Aa ratio and the HOMA-	150
<i>51</i>	IR (p=0.011; r= -0.358)	178
54	Relation of TDI septal Ea/Aa ratio to the lateral Ea/Aa ratio showing a	
	strong positive correlation between TDI septal Ea/Aa ratio and lateral	170
55	Ea/Aa ratio (p<0.001; r=0.734) Polation between TDI lateral Ea valuaity and aga (Shawing an inverse	179
33	Relation between TDI lateral Ea velocity and age (Showing an inverse correlation with p=0.036; r= -0.297)	180
56	Relation between TDI lateral Ea velocity and LDL-C. (Showing an	100
30	inverse correlation with p=0.00 7; r= -0.375)	180
57	Relation between TDI lateral Aa velocity and fasting and postprandial	100
	blood glucose. Left panel showing a positive correlation between	
	lateral Ea velocity and FBS (p= 0.005; r=0.392) and right panel	
	showing a positive correlation with PP glucose (p=0.008; r=0.370)	181
58	Relation between TDI lateral Aa velocity and HbA1C% (showing a	
	positive correlation with p=0.005 and r= 0.391)	181
59	Left panel showing an inverse correlation between TDI lateral Ea/Aa	
	ratio and the fasting blood sugar (p=0.005; r= -0,395) and <i>right panel</i>	
	showing an inverse correlation between lateral Ea/Aa ratio and the	
	postprandial blood glucose (p=0.002; r= -0.420)	184
60	Left panel showing an inverse correlation between lateral Ea/Aa ratio	
	and HbA1C% (p=0.008; r= -0.370) and <i>right panel</i> showing an inverse	
	correlation between lateral Ea/Aa ratio and LDL-C (p=0.004; r= -	185
61	0.400) Tissue Doppler recordings of one of the diabetic subjects included in	100
01	the present study. <i>Upper panel</i> showing normal diastolic function by	
	TDI of the septal (medial) portion of the mitral annulus with septal	
	Ea/Aa ratio=1.5. Lower panel also showing normal diastolic function	
	by TDI of the lateral portion of the mitral annulus	186
62	Tissue Doppler recordings of one of the diabetic subjects included in	
	the present study. <i>Upper panel</i> showing normal diastolic function by	
	TDI of the septal (medial) portion of the mitral annulus with septal	
	Ea/Aa ratio=1.2. <i>Lower panel</i> showing diastolic dysfunction by TDI of	
	the lateral portion of the mitral annulus with lateral Ea/Aa ratio=0.9	187
63	Tissue Doppler recordings of one of the diabetic subjects included in	
	the present study. <i>Upper panel</i> showing diastolic dysfunction by TDI	
	of the septal (medial) portion of the mitral annulus with septal Ea/Aa	
	ratio=0.5. <i>Lower panel</i> showing diastolic dysfunction by TDI of the	4
	lateral portion of the mitral annulus with lateral Ea/Aa ratio=0.9	188

List of Tables

Table	Title	Page
1	Aetiological classification of glycaemic disorders (ADA-Position	
	Statement, 2009)	5
2	Other Specific Types of Diabetes (ADA-Position Statement, 2009)	6
3	Criteria for the diagnosis of diabetes	10
4	Diagnosis of GDM with a 100-g or 75-g glucose load	11
5	The stages and progression of diabetic cardiomyopathy	56
6	Assessment of diastolic dys(function)-trans-mitral Doppler velocities	58
7	Determinants of diastolic function	73
8	Phases of diastole, the corresponding physiologic determinants, and	
	the electrocardiographic and echocardiographic correlates	76
9	Causes of diastolic dysfunction and heart failure	78
10	Determinants of myocardial inactivation	80
11	Diastolic parameters (Mayo Clinic Doppler Criterias) Doppler mitral	
	inflow velocity patterns	88
12	Tests for diabetic autonomic neuropathy	136
13	Comparison of clinical characteristics between the diabetic subjects	
	and controls	140
14	Comparison of the laboratory variables between the diabetic and	
	control groups	141
15	Comparison of conventional echocardiographic parameters (2-	1.10
4.6	dimensional and M-mode) between diabetics and controls	143
16	Comparison of conventional Doppler indices between diabetic	111
4.5	subjects and controls	144
17	Comparison of the different E/A ratios between diabetic subjects and	145
10	controls Comparison of TDI mitral contal annular valuation hatvoor dishation	145
18	Comparison of TDI mitral septal annular velocities between diabetics	146
19	and the control group Comparison of the different septal Ea/Aa ratios between the diabetic	140
19	subjects and the controls	147
20	Comparison of lateral mitral annular velocities between diabetic	17/
20	subjects and controls	148
21	Comparison of different lateral Ea/Aa ratios between diabetic subjects	140
	and the control group	149
22	Comparison of trans-mitral E/TDI Ea ratio and LV mass index	1.7
	between the diabetic subjects and control group	150
23	Comparison of clinical and laboratory parameters between group I	
	(those who showed diastolic dysfunction by conventional Doppler)	
	and group II (who showed normal diastolic function by conventional	
	Doppler study)	154
24	Comparison of conventional Doppler parameters between group I and	
	group II	154
25	Comparison of conventional echocardiographic measurements (M-	
	mode) between group I and group II	155

Table	Title	Page
26	Comparison of TDI septal annulus parameters between group I and	
	group II	156
27	Comparison of TDI lateral mitral annular parameters between group I	
	and group II	157
28	Comparison of clinical and laboratory variables between group IIa and	
	group IIb (normal diastolic function by both)	158
29	Comparison of conventional echocardiographic parameters between	4 = 0
•	group IIa and group IIb	159
30	Comparison of conventional Doppler parameters between group IIa	4.50
21	and group IIb	159
31	Comparison of TDI mitral annular velocities between group IIa and	1.00
22	group IIb	160
32	Comparison of lateral mitral annular parameters between group IIa and IIb	161
33		101
33	Comparison of Group I, Group IIa and IIb as regards conventional Doppler parameters	162
34	Comparison of TDI septal annular velocities between group I, group	102
34	IIa and group IIb	163
35	Comparison of lateral mitral annular velocities by TDI between	103
	Group I, Group IIa and IIb	164
36	Correlation of E/A ratio with the clinical and laboratory parameters	166
37	Correlation of LV mass and LV mass index to the E/A ratio	169
38	Correlation of LV mass and LV mass index to TDI septal annulus	
	velocities	170
39	Correlation of LV mass and LV mass index to TDI lateral annulus	
	velocities	170
40	Correlation of LV mass and LV mass index to septal Ea/Aa and lateral	
	Ea/Aa ratio	171
41	Correlation of TDI septal annulus velocities with clinical and	
	laboratory variables	172
42	Correlation of other TDI septal annulus parameters with metabolic	
	data, septal velocities, LV mass and LV mass index	176
43	Correlation of the septal Ea/Aa ratio with metabolic and clinical	
	parameters	177
44	Correlation of TDI lateral annulus velocities with the clinical and	
	metabolic parameters	179
45	Correlation of the lateral Ea/Aa ratio with clinical and metabolic	
	parameters	183