

Ain Shams University
Faculty of Pharmacy
Pharmacology and Toxicology Department

Potential protective effects of epigallocatechin-3-gallate against doxorubicin-induced cardiotoxicity in rats

Thesis submitted for the fulfillment of PhD degree in Pharmaceutical Sciences

Department of Pharmacology and Toxicology

<u>Submitted By</u> Noha Mohammed Saeed

Lecturer assistant of Pharmacology and Toxicology, Faculty of Pharmacy Egyptian Russian University

Under the Supervision of:

Prof. Hanaa Mohammed Abdel-Rahman

Professor of Pharmacology and Toxicology, Faculty of Pharmacy Egyptian Russian University

Prof. Ebtehal EL-Demerdash Zaki

Professor and Head of Pharmacology and Toxicology, Faculty of Pharmacy Ain Shams University

Dr. Wesam Mostafa El-Bakly

Associate Professor of Pharmacology, Faculty of Medicine
Ain Shams University

Dr. Reem Nabil Abu El-Naga

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy Ain Shams University

2015

"يَرْفَعِ ٱللَّهُ ٱلَّذِينَ آمَنُواْ مِنكُمْ وَٱلَّذِينَ أُوتُواْ ٱلْعِلْمَ دَرَجَاتٍ وَٱللَّهُ بِمَا تَعْمَلُونَ خَبِيرٌ"

سورة المجادلة ١١

First and foremost, I feel always indebted to ALLAH, whose blessings I will never be able to thank him for.

At this moment of accomplishment, first of all I pay homage to Professor Hanaa M. Abdel-Rahman, Prof. of Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, for her advice, guidance, continuous encouragement and enthusiastic support. I appreciate all her contributions of time and ideas to make my Ph.D. experience productive. The supervision and support that she gave truly help the progression and smoothness of this work.

No words would never express my sincerest appreciation to Professor Ebtehal El-Demerdash Zaki, Head of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, for her supervision, and crucial contribution in point suggestion, which made her a backbone of this research. Her involvement with originality has triggered and nourished my growth as a student, a researcher and a scientist want to be. I am also thankful for the excellent example she has provided as a successful woman and professor.

I am extremely indebted to Dr. Wesam Mostafa El-Bakly, Associate Professor of Pharmacology, Faculty of Medicine, Ain Shams University, for her guidance from the very early stage of this research and unflinching encouragement. Her truly scientist intuition has exceptionally inspired and enriches my intellectual maturity that I will benefit from, for a long time to come.

I owe a special word of thanks to Dr. Reem Nabil Abu El-Naga, Lecturer of Pharmacology and Toxicology, Faculty of

Pharmacy, Ain Shams University. The joy and enthusiasm she has for the research was contagious and motivational for me, even during tough times in the Ph.D. pursuit. I appreciate her for using her precious times to read this thesis and gave her critical comments about it. Under her guidance I successfully overcame many difficulties and learned a lot.

At this moment of accomplishment, I owe a special word of thanks for Dr. Ahmed Mansoor, Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University (boys) for providing me with Doxorubicin used in this work. Also I owe special thanks to Dr. Mona Moussa, Professor of Patholgy, Theodor-Bilharz Research Institute for capturing the immunohistochemical images. Everlasting thanks to Associate Professor Rania Ahmad Salah El-Din, Depatment of Anatomy, Faculty of Medicine, Ain Shams University, for completing the histopathological analysis in this work.

It is difficult to overstate my deepest appreciation to my colleges, co-workers in Ain Shams University and Egyptian Russian University, for their continuous support and indispensable help. Finally I would like to give everlasting thanks to my family members, especially my beloved husband Ahmed and my children Hla, Abdurrahman and Khadija for supporting and encouraging me to pursue this degree. This thesis is the end of my journey in obtaining my Ph.D. This thesis arose after so many years of struggle to the extent that I can't believe it. To everyone who made this work possible, I am truly grateful.

Noha M. Saeed

Contents	page
List of abbreviations	VII
List of Tables	ΙX
List of Figure	ΧI
Abstract	1
Review of literature	2
I. Doxorubicin	2
Physical and chemical properties	3
Pharmacodynamics	4
1. DNA damage	5
a. Role of proteasome	5
b. Role of Free Radicals	6
2. Topoisomerase II inhibition	7
3. Doxorubicin-Formaldehyde conjugates and DNA virtual cross-linking	8
Pharmacokinetics	9
1. Absorption	9
2. Distribution	10
3. Metabolism	10
4. Elimination	11
Toxicity	12
1. Doxorubicin-induced hepatotoxicity	12
2. Doxorubicin-induced nephrotoxicity	12
3. Doxorubicin-induced neurotoxicity	13
4. Doxorubicin-induced hematopieotic toxicity	13
5. Doxorubicin-induced dermal toxicity	14
6. Doxorubicin-induced gastrointestinal toxicity	14
7. Doxorubicin-induced cardiotoxicity	15
Types of doxorubicin-induced cardiotoxicity	<i>15</i>
Incidence and risk factors of doxorubicin-induced cardiotoxicity	17
Molecular mechanisms of doxorubicin -induced cardiotoxicity	18
1. Oxidative stress	19
1.1. Mitochondrial dependent ROS	19
1.2. Nitric oxide synthase dependent ROS	20
1.3. Nicotinamide adenine dinucleotide phosphate -dependent ROS	22
1.4. Iron-induced ROS	22
2. Apoptosis	23
3. Intracellular calcium dysregulation	26
4. Changes in the high energy phosphate pool	28
5. Inflammatory response	29
Treatment of DOX-induced cardiomyopathy	30

D	r
Pro	face
110	ucc

	Prevent	tion of DOX-induced cardiomyopathy	31
	1.	Dosage optimization	32
	2.		32
	3 .	Alternative methods for drug delivery	32
	4.	Hematopoietic cytokines	<i>33</i>
	<i>5.</i>	The use of antioxidants	34
II.	Epigallo	catechin-3-gallate	36
	Physical	and chemical properties	<i>37</i>
	•	odynamics of EGCG	<i>38</i>
	1.	Anti-oxidant activity	<i>38</i>
	2.	Anti-apoptotic activity	40
	<i>3.</i>	Anti-proliferative activity	40
	4.	Anti-inflammatory effect	41
	<i>5.</i>	Effect on lipid profile	42
	6.	Anti-platelet and anti-thrombotic activity	43
	<i>7.</i>	Other effects	43
	Pharma	cokinetics of Epigallocatechin-3-gallate	45
	Toxicity	y	48
Ain	of the	work	51
Ма	terials ar	nd Methods	<i>53</i>
	I. Mat	rerials	<i>53</i>
	1.	Drugs	<i>53</i>
	2.	Animals	<i>54</i>
	3 .	Chemicals	<i>56</i>
	4.	Buffers	<i>57</i>
	5 .	Readymade kits	<i>57</i>
		5.1. Kits for spectrophotometric analysis	<i>57</i>
		a. Catalase	<i>57</i>
		b. Creatine Kinase MB	<i>57</i>
		c. Reduced Glutathione Assay Kit	<i>58</i>
		d. Lactate dehydrogenase ;liquizyme	<i>58</i>
		e. Lipid peroxide Malondialdehyde	<i>59</i>
		f. Superoxide Dismutase	<i>59</i>
		5.2. Enzyme-linked Immunosorbent Assay (ELISA) kits	60
		a. Caspase 3 ELISA kit	60
		b. Caspase 12 ELISA kit	60
		c. Rat Calpain 2 ELISA Kit	61
		d. Hsp70 ELISA Kit	61
		5.3. Quantitative real time polymerase chain reaction kits	62
		a. QIAzol® and RNeasy mini kit	62

		b. High-Capacity cDNA Archive Kit	62
		c. QuantiTect® SYBR® Green PCR Kit	63
	6.	Primers	64
II.	Exp	perimental design	65
	1.	Screening of the potential cardioprotective dose of EGCG	65
	2.	Studying the mechanisms underlying the cardioprotective eff	ects of
		EGCG	67
III	Γ.	Methods	69
	1.	Electrocardiography	69
	2.	Assessment of cardiotoxicity indices	70
		a) Lactate dehydrogenase	70
		b) Creatine kinase MB	72
	3.	Histopathological examination	74
	4.	Tissue homogenate preparation	<i>75</i>
	5 .	Assessment of oxidative stress markers	76
		a) Determination of reduced glutathion	76
		b) Determination of lipid peroxide as malondialdehyde	<i>77</i>
	6.	Assessment of antioxidant enzyme activities	<i>79</i>
		a) Determination of superoxide dismutase	79
		b) Determination of catalase	81
	<i>7.</i>	Immunohistochemical detection of nuclear factor kappa B	83
	8.	Assessment of caspase 3	86
	9.	Assessment of Sarcoplasmic reticulum-mediated apoptosis	90
		a) Determination of Caspase 12	90
		b) Determination of Calpain 2	95
	10.		98
	11.		103
	<i>12</i> .		105
3	itati.	istical analysis	114
Results			115
Part I:		e potential cardioprotective dose	115
	1.	Electrocardiography	115
	2.	· · · · · · · · · · · · · · · · · · ·	118
	3.	· · · · · · · · · · · · · · · · · · ·	121
Part II		echanistic study	124
		Electrocardiography	124
		Cardiotoxicity indices	127
		Histopathological examination	130
		Oxidative stress markers	133
	5. A	Antioxidant enzymes	136

	<u>Preface</u>
6. Epidermal growth factor receptor 2 expression	139
7. Nuclear factor-kappa B (p65) protein expression	142
8. Sarcoplasmic reticulum-mediated apoptosis	145
9. Apoptotic markers	148
10. Cardioprotective Heat shock protein 70	151
Discussion	154
Summary and Conclusion	168
References	174
Arabic abstract	,

List of abbreviations Adenosine tri-phosphate (ATP) (ACE) Angiotensin converting enzyme (ANTs) Anthracyclines Apoptosis inducing factor (AIF) Calcium (Ca²+) Cardiovascular system (CV5) (CAT) Catalase complementary DNA (cDNA) (CHF) Congestive heart failure Creatine kinase (CK) Deoxyribonucliec acid (DNA) 5,5' dithiobis-2-nitrobenzoic acid (DTNB) Doxorubicin (DOX) Electrocardiography (ECG) Endothelial nitric oxide synthase (eNO5) Epidermal growth factor receptor 2 (ErbB2) Epigallocatechin-3-gallate (EGCG) Erythropoietin (EPO) Extracellular signal-regulated kinases (ERK1/2) Ferric ion (Fe³⁺) (Fe²⁺) Ferrous ion Glucose-6-phosphate dehydrogenase (G6PDH) Granulocyte colony stimulating factor (G-CSF) Heart rate (HR) (HSF) Heat shock factor (Hsp) Heat shock protein Hexokinase (HK) Horseradish peroxidase (HRP) Hydrogen peroxide (H_2O_2) Hydroxyl radical $(OH \cdot)$ **Immunohistochemistry** (IHC) Inhibitory kappa B (IKB) International unit (IU) Intraperitoneal (i.p) Intravenous (IV) Lactate dehydrogenase (LDH) Inducible nitric oxide synthase (iNOS) Inhibitor- KB Kinase (IKK) Malondialdehyde (MDA)

Mitogen-activated protein kinase	(MAPK)
7-monohydroxyethylrutoside	(monoHER)
Nicotinamide adenine dinucleotide phosphate	(NADPH)
Nitric oxide	(NO)
Nitric oxide synthase	(NOS)
Nitroblue tetrazolium	(NBT)
Nuclear factor kappa-B	(NF-κB)
Optical density	(OD)
Oxygen	(02)
Phenazine methosulphate	(PMS)
Phosphate buffer solution	(PBS)
Platelet activating factor	(PAF)
Potassium ion	(K ⁺)
Quantitative real-time Polymerase chain reaction	(RT-PCR)
Reactive oxygen species	(ROS)
Reduced glutathione	(GSH)
Recombinant human erythropiotin	(rhEPO)
Ribonucleic acid	(RNA)
Sodium ion	(Na⁺)
Superoxide dismutase	(SOD)
Superoxide radical	(O2 ^{·-})
3,3',5,5' tetramethyl benzidine	(TMB)
Thiobarbituric acid	(TBA)
Thiobarbituric acid reactive species	(TBARS)
Thrombopiotin	(TPO)
Trichloroacetic acid	(TCA)
Tumer necrosis factor-alpha	(TNF-a)
Unit/ liter	(U/L)
Vascular adhesion molecules	(VCAMs)
Vascular smooth muscle cells	(VSMCs)
Xanthine oxidase	(XO)

List of Tables

Table no.	Title	Page
1.	Effect of pretreatment with different doses of EGCG on the ECG parameters (heart rate, QT interval, QTc interval and R voltage) and acute DOX intoxication on rats.	116
2.	Cardiotoxicity markers (LDH and CK-MB) for rats pretreated with different doses of EGCG on acute DOX intoxication.	119
3.	Severity of the reaction in myocardium according to the histopathological alterations in rats pretreated with different doses of EGCG and acute DOX-induced cardiotoxicity.	122
4.	ECG parameters (HR) for rats pretreated with 40 mg/kg EGCG and chronic DOX-intoxication.	125
<i>5</i> .	Cardiotoxicity markers (LDH and CK-MB) for rats treated with 40 mg/kg EGCG and chronic DOX-intoxication.	128
6.	Quantification of apoptotic nuclei and severity of the reaction in myocardium according to the histopathological alterations in chronic DOX-induced cardiotoxicity and rats pretreated with 40 mg/kg EGCG.	131
7.	Effect of 40 mg/kg EGCG pretreatment on DOX-induced changes in protein thiols and lipid peroxides measured as GSH and MDA levels, respectively.	134
8.	Effect of pretreatment with 40 mg/kg EGCG on	137

	antioxidant enzyme activity (CAT and SOD) during chronic DOX-induced cardiotoxicity in rats	
9.	Effect of pretreatment with 40 mg/kg EGCG on mRNA expression of ErbB2 in chronic DOX-induced cardiotoxicity.	140
10	Effect of pretreatment with 40 mg/kg EGCG on NF-κB (p65) expression in chronic DOX-induced cardiotoxicity.	143
11.	Effect of pretreatment with 40 mg/kg EGCG on sarcoplasmic reticulum-mediated apoptosis (calpain 2 and caspase 12) in chronic DOX-induced cardiotoxicity.	146
12	Effect of pretreatment with 40 mg/kg EGCG on caspase 3 levels and p53 expression in chronic DOX-induced cardiotoxicity.	149
13	Effect of pretreatment with 40 mg/kg EGCG on Hsp70 levels in chronic DOX-induced cardiotoxicity.	152

List of Figures

Fig. no.	Title	Page
1	Chemical structure of doxorubicin	4
2	One-electron redox cycling of ANTs	7
3	Molecular transformations of DOX.	21
4	Proposed mechanisms of ROS formation by DOX that involves iron.	22
5	Schematic overview of the apoptotic pathways proposed to explain DOX-induced cardiotoxicity	24
6	Hsp70 inhibit apoptosis by inhibiting caspase 3	25
7	Chemical structure of EGCG	37
8	Structures of EGCG metabolites	48
9	Standard calibration curve of caspase 3	89
10	Standard calibration curve of caspase 12	94
11	Standard calibration curve of calpain 2.	97
12	Standard calibration curve of Hsp70	102
13	Standard calibration curve for total protein.	104
14	Effect of EGCG pretreatment on acute DOX-induced alterations in ECG pattern	117
15	Effect of pretreatment with different doses of EGCG on LDH released during acute DOX-induced cardiotoxicity in rats.	120

16	Effect of pretreatment with different doses of EGCG on CK-MB released during acute DOX-induced cardiotoxicity in rats.	120
17	Effect of EGCG pretreatment on acute DOX-induced histological alterations of the heart tissue (x 400).	123
18	Effect of EGCG pretreatment on chronic DOX-induced alterations in ECG pattern (HR).	126
19	Effect of pretreatment with 40 mg/kg EGCG on LDH released during chronic DOX-induced cardiotoxicity in rats.	129
20	Effect of pretreatment with 40 mg/kg EGCG on CK-MB released during chronic DOX-induced cardiotoxicity in rats.	129
21	Effect of pretreatment with 40 mg/kg EGCG on chronic DOX-induced histological alterations of the heart tissue (x 400).	132
22	Effect of 40 mg/kg EGCG pretreatment on GSH depleted during chronic DOX-induced cardiotoxicity in rats.	135
23	Effect of 40 mg/kg EGCG pretreatment on MDA released during chronic DOX-induced cardiotoxicity in rats.	135
24	Effect of pretreatment with 40 mg/kg EGCG on CAT activity during chronic DOX-induced cardiotoxicity in rats.	138
25	Effect of pretreatment with 40 mg/kg EGCG on SOD activity during chronic DOX-induced cardiotoxicity in rats.	138
26	Effect of pretreatment with 40 mg/kg EGCG on ErbB2 expression during chronic DOX-induced cardiotoxicity in rats.	141

27	Expression of NF-kB (p65) by immunohistochemical staining (x 200)	144
28	Effect of pretreatment with 40 mg/kg EGCG on calpain 2 released during chronic DOX-induced cardiotoxicity in rats.	147
29	Effect of pretreatment with 40 mg/kg EGCG on caspase 12 released during chronic DOX-induced cardiotoxicity in rats.	147
30	Effect of pretreatment with 40 mg/kg EGCG on caspase 3 released during chronic DOX-induced cardiotoxicity in rats.	150
31	Effect of pretreatment with 40 mg/kg EGCG on p53 expression during chronic DOX-induced cardiotoxicity in rats.	150
32	Effect of pretreatment with 40 mg/kg EGCG on Hsp70 levels released during chronic DOX-induced cardiotoxicity in rats.	153