IMPROVEMENT OF PHOSPHATE FERTILIZERS EFFICIENCY USE FOR CERTAIN SOILS OF EGYPT

By

MAHMOUD IBRAHIM ABD EL FATAH NOSAIR

B.Sc.Agric.Sc. (Soil science), Ain Shamus Univ. (2002) M.Sc.Agric.Sc. (Soil science), Ain Shamus Univ. (2010)

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

in
Agricultural Sciences
(Soil Science)

Department of Soil Science Faculty of Agriculture Ain Shams University

Approval sheet

IMPROVEMENT OF PHOSPHATE FERTILIZERS EFFICIENCY USE FOR CERTAIN SOILS OF EGYPT

By

MAHMOUD IBRAHIM ABD EL FATAH NOSAIR

B.Sc.Agric.Sc. (Soil science), Ain Shamus Univ. (2002) M.Sc.Agric.Sc. (Soil science), Ain Shamus Univ. (2010)

This thesis for P.hD. degree has been approved by:
Dr. Ahmed Mohamed Helmy Khater
Researcher Prof. Emeritus of Soil Science, National Research Center.
Dr. Ahmed Abdelfattah Ahmed Ibrahim
Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams
University.
Dr. Mohamed Ahmed Mahmoud Mostafa
Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams
University.
Dr. Abdel-Samad Salem Ismail Hegazy
Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams
University.

Date of examination: / 2017

IMPROVEMENT OF PHOSPHATE FERTILIZERS EFFICIENCY USE FOR CERTAIN SOILS OF EGYPT

By

MAHMOUD IBRAHIM ABD EL FATAH NOSAIR

B.Sc.Agric.Sc. (Soil science), Ain Shamus Univ. (2002) M.Sc.Agric.Sc. (Soil science), Ain Shamus Univ. (2010)

Under supervision of:

Dr. Abdel-Samad Salem Ismail Hegazy

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Mohamed Ahmed Mahmoud Mostafa

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Abd El-Rahman Ahmed Zaid

Head of Laboratories and Research Quality Sector of Abu Zaabal Fertilizers and Chemicals Company.

ABSTRACT

Mahmoud Ibrahim Nosair: Improvement of Phosphate Fertilizers Efficiency Use for Certain Soils of Egypt. Unpublished Ph.D. Thesis, Department of Soil Science. Faculty of Agriculture, Ain Shams University, 2017

Phosphorus is one of 17 nutrients essential for plant growth. Its functions cannot be performed by any other nutrient, and an adequate supply of P is required for optimum growth and reproduction. The present investigation was carried out to study the effect of application of different granular single supper phosphate (GSSP) fertilizers treatments on availability of phosphorus in different soils. To fulfill the aims of this study, Firstly, an incubation experiment was done to study the effect of some organic materials (vinasse and humic acid) in combination with super-phosphate on the availability of phosphorus in both clay and sandy soils. The best treatments were GSSP coated with vinasse (100%) and GSSP coated with humic acid (20%) for both clay and sandy soils. Secondly, two field experiments in clay and sandy soils were carried out to study the effect of these different treatments of supper phosphate fertilizers (the best treatments of incubation experiment) on phosphorus uptake by wheat plants. The results showed that the best treatments for clay soil GSSP coated with vinasse at 300 kg/fed for dry matter yield and GSSP coated with vinasse at 100, 200 kg/fed for nutrient content of wheat plant at tillering growth stage. The best treatment was GSSP at a rate of 300 kg/fed for both dry matter and weight of spikes while addition of GSSP at a rate of 100kg/fed for nutrient content of wheat plant at flowering growth stage. Application GSSP coated with vinasse at a rate of 200 kg/fed led to significantly increase straw and grain yields as well as nutrient uptake by wheat plants. While biological yield was significantly increased as a result of added GSSP coated with humic acid at a rate of 300 kg/fed. The best treatments for phosphorus use efficiency (PUE) were GSSP coated with vinasse at applied a rate of 200 kg/fed for straw yield and GSSP coated with humic acid at added a rate of 100 kg/fed for grain yield. Results also revealed that the best treatments for sandy soil were GSSP at applied a rate of 300 kg/fed for dry matter and GSSP coated with vinasse at applied a rate of 200 and 300 kg/fed for nutrient content at tillering growth stage. Whereas, application of GSSP coated with both of humic acid and vinasse at the rate of 200 kg/fed were favorited for dry matter and weight of spikes, respectively, while addition GSSP at the rate of 200 kg/fed was the best one for nutrient content at flowering growth stage. The best treatments for straw and grain yields, as well as nutrient uptake were GSSP coated with vinasse at the rate of 200 kg/fed was the best one for biological yield. In addition, the best treatment for PUE was GSSP coated with humic acid at the rate of 100 kg/fed for straw and grain yields.

Key words: Wheat, Supper phosphate, Vinasse, Humic acid.

ACKNOWLEDGEMENT

All thanks to ALLAH who gave me an ability to overcome all difficulties faced the accomplishing of this investigation.

The author wishes to express his great appreciation and deep gratitude all thanks to **Dr. Abdel-Samad Salem Ismail Hegazy**, **Professor** of Soil Science **and Dr. Mohamed Ahmed Mahmoud Mostafa**, **Professor** of Soil Science, Soils Department, Faculty of Agriculture, Ain Shams University, for suggesting the problem, drawing the plane of the work, active supervision, helpful guidance and continuous criticism in preparing and writing up this manuscript.

The author wishes to express his great appreciation and deep gratitude to **Dr. Mohamed Abd El-Rahman Ahmed Zaid** Head of Laboratories and Research Quality Sector of Abu Zaabal Fertilizers and Chemicals Company, for Supervision and guidance and assistance in the implementation of the Action Plan. The author wishes to express his great appreciation and deep gratitude to **Dr. Ahmed Ismail Ahmed Abd El-All Researcher** at the Institute of Soil, Water and Environment Research Center of Agricultural Research, for Supervision and guidance and assistance in the implementation of the Action Plan.

The author wishes to express his great appreciation and deep gratitude all thanks to **Dr. Sherif Elgabaley** chairman of Abu Zaabal Fertilizers and Chemicals Company and the author wishes to express his great appreciation and deep gratitude all thanks to **En. Abd Elsalem Elgabaley** Vice Chairman and Managing Director and the author wishes to express his great appreciation and deep gratitude all thanks to **Accountant Naef Fahmey** Vice Chairman and Managing Director for Great of the confidence and the opportunity to this study.

ABSTRACT

Mahmoud Ibrahim Nosair: Improvement of Phosphate Fertilizers Efficiency Use for Certain Soils of Egypt. Unpublished Ph.D. Thesis, Department of Soil Science. Faculty of Agriculture, Ain Shams University, 2017

Phosphorus is one of 17 nutrients essential for plant growth. Its functions cannot be performed by any other nutrient, and an adequate supply of P is required for optimum growth and reproduction. The present investigation was carried out to study the effect of application of different granular single supper phosphate (GSSP) fertilizers treatments on availability of phosphorus in different soils. To fulfill the aims of this study, Firstly, an incubation experiment was done to study the effect of some organic materials (vinasse and humic acid) in combination with super-phosphate on the availability of phosphorus in both clay and sandy soils. The best treatments were GSSP coated with vinasse (100%) and GSSP coated with humic acid (20%) for both clay and sandy soils. Secondly, two field experiments in clay and sandy soils were carried out to study the effect of these different treatments of supper phosphate fertilizers (the best treatments of incubation experiment) on phosphorus uptake by wheat plants. The results showed that the best treatments for clay soil GSSP coated with vinasse at 300 kg/fed for dry matter yield and GSSP coated with vinasse at 100, 200 kg/fed for nutrient content of wheat plant at tillering growth stage. The best treatment was GSSP at a rate of 300 kg/fed for both dry matter and weight of spikes while addition of GSSP at a rate of 100kg/fed for nutrient content of wheat plant at flowering growth stage. Application GSSP coated with vinasse at a rate of 200 kg/fed led to significantly increase straw and grain yields as well as nutrient uptake by wheat plants. While biological yield was significantly increased as a result of added GSSP coated with humic acid at a rate of 300 kg/fed. The best treatments for phosphorus use efficiency (PUE) were GSSP coated with vinasse at applied a rate of 200 kg/fed for straw yield and GSSP coated with humic acid at added a rate of 100 kg/fed for grain yield. Results also revealed that the best treatments for sandy soil were GSSP at applied a rate of 300 kg/fed for dry matter and GSSP coated with vinasse at applied a rate of 200 and 300 kg/fed for nutrient content at tillering growth stage. Whereas, application of GSSP coated with both of humic acid and vinasse at the rate of 200 kg/fed were favorited for dry matter and weight of spikes, respectively, while addition GSSP at the rate of 200 kg/fed was the best one for nutrient content at flowering growth stage. The best treatments for straw and grain yields, as well as nutrient uptake were GSSP coated with vinasse at the rate of 200 kg/fed was the best one for biological yield. In addition, the best treatment for PUE was GSSP coated with humic acid at the rate of 100 kg/fed for straw and grain yields.

Key words: Wheat, Supper phosphate, Vinasse, Humic acid.

ACKNOWLEDGEMENT

All thanks to ALLAH who gave me an ability to overcome all difficulties faced the accomplishing of this investigation.

The author wishes to express his great appreciation and deep gratitude all thanks to **Dr. Abdel-Samad Salem Ismail Hegazy**, **Professor** of Soil Science **and Dr. Mohamed Ahmed Mahmoud Mostafa**, **Professor** of Soil Science, Soils Department, Faculty of Agriculture, Ain Shams University, for suggesting the problem, drawing the plane of the work, active supervision, helpful guidance and continuous criticism in preparing and writing up this manuscript.

The author wishes to express his great appreciation and deep gratitude to **Dr. Mohamed Abd El-Rahman Ahmed Zaid** Head of Laboratories and Research Quality Sector of Abu Zaabal Fertilizers and Chemicals Company, for Supervision and guidance and assistance in the implementation of the Action Plan. The author wishes to express his great appreciation and deep gratitude to **Dr. Ahmed Ismail Ahmed Abd El-All Researcher** at the Institute of Soil, Water and Environment Research Center of Agricultural Research, for Supervision and guidance and assistance in the implementation of the Action Plan.

The author wishes to express his great appreciation and deep gratitude all thanks to **Dr. Sherif Elgabaley** chairman of Abu Zaabal Fertilizers and Chemicals Company and the author wishes to express his great appreciation and deep gratitude all thanks to **En. Abd Elsalem Elgabaley** Vice Chairman and Managing Director and the author wishes to express his great appreciation and deep gratitude all thanks to **Accountant Naef Fahmey** Vice Chairman and Managing Director for Great of the confidence and the opportunity to this study.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Phosphorus chemical behaviors in soil	4
2.1.1 Factors affecting phosphorus availability	4
2.2. Functions of phosphorus in plants	6
2.2.1 The important role of phosphorus for wheat plants.	7
2.3. Improvement phosphorus availability	8
2.3.1. Effect of vinasse	9
2.3.1.1 Effect of vinasse on the availability of phosphorus in	
soils	9
2.3.1.2 Effect of vinasse on wheat plants	10
2.3.2 Effect of humic acid	12
2.3.2.1 Effect of humic acid on the availability of phosphorus in	
soils	12
2.3.2.2 Effect of humic acid on nutrient elements of plant.	13
2.3.2.3. Effect of humic acid on wheat plants	15
3. MATERIALS AND METHODS	17
3.1. Preparation of supper phosphate fertilizer	17
3.1.1. Incubation experiment	17
3.2. Field experiments.	19
3.2.1. First experiment.	19
3.2.2. Second experiment	20
3.3. Methods of analysis	20
3.3.1. Soil analysis	20
3.3.2. Plant analysis	21
3.3.3. Fertilizer use efficiency	22
3.3.4. Statistical analysis	22

	Page
4. RESULTS AND DISCUSSION	23
4.1. Incubation experiment.	23
4.1.1. Clay soil.	23
4.1.2. Sandy soil	25
4.2. Field experiments	27
4.2.1 First experiment	27
4.2.1.1. Tillering growth period.	27
4.2.1.2. Flowering growth period.	30
4.2.1.3. Harvest of wheat plants grown on a clay soil	32
4.2.1.4. Phosphorus use efficiency (PUE) by wheat plants	37
4.2.2 Second experiment.	40
4.2.2.1. Tillering growth period.	40
4.2.2.2. Flowering growth period	43
4.2.2.3. Harvest of wheat plants grown on a sandy soil	45
4.2.2.4. Phosphorus use efficiency (PUE) by wheat plants	50
5. SUMMARY	53
6. REFERENCES	58
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Pa
1	The main physical and chemical analyses of the studied soil	
	samples	1
2	Chemical characteristics of vinasse and humic acid applied in	
	the study]
3	Effect of applying different GSSP as mineral fertilizer alone or	
	coated with either vinasse or humic acid on the availability of	
	phosphorus (mg kg ⁻¹) at different incubation periods in clay	
	soil	2
4	Effect of applying different GSSP as mineral fertilizer alone or	
	coated with either vinasse or humic acid on availability of	
	Phosphorus (mg kg ⁻¹) at different incubation periods in a sandy	
	soil	2
5	Effect of applying different GSSP as mineral fertilizer alone or	
	coated with either vinasse or humic acid on plant height, number of	
	tillers and dry matter of wheat plants grown on a clay soil at	
	tillering growth stage	2
6	Effect of applying different GSSP as mineral fertilizer alone or	
	coated with either vinasse or humic acid on nutrient content of	
	wheat plants grown on a clay soil at tillering growth	
	stages	2
7	Effect of applying different GSSP as mineral fertilizer alone or	
	coated with either vinasse or humic acid on growth characteristics	
	of wheat plants grown on a clay soil at flowering growth	
	stage	
8	Effect of applying different GSSP as mineral fertilizer alone or	
	coated with either vinasse or humic acid on nutrient content of	
	wheat plants grown on a clay soil at flowering growth	
	stages	3

Гable No.		Page
9	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on yield and its components at harvest of wheat plants grown on a clay	
10	soil Effect of applying different GSSP as mineral fertilizer alone or	33
10	coated with either vinasse or humic acid on nutrient uptake of straw yield of wheat plants grown on a clay soils	33
11	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on nutrient uptake of grains yield of wheat plants grown on a clay	33
	soils	37
12	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on phosphorus use efficiency (PUE) of straw and grain yield of wheat plants grown on	
	a clay soils	38
13	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on plant height, number of tillers and dry matter of wheat plants grown on a sandy soil at tillering growth stage	4.1
14	Effect of applying different GSSP as mineral fertilizer alone or	41
14	coated with either vinasse or humic acid on nutrient content of wheat plants grown on a sandy soil at tillering growth	
	stages	42
15	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on growth Characteristics of wheat plants grown on a sandy soil at flowering growth	
	stage	44

Table No.		Page
16	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on nutrient content of wheat plants grown on a sandy soil at flowering growth	456
17	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on yield and its components at harvest growth stage of wheat plants grown on a sandy soil	450
18	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on nutrient uptake of straw yield of wheat plants	48
19	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on nutrient uptake of grains yield of wheat plants grown on a sandy soils	49
20	Effect of applying different GSSP as mineral fertilizer alone or coated with either vinasse or humic acid on phosphorus use efficiency (PUE) of straw and grain yield of wheat plants grown on	
	a sandy soils	51

LIST OF FIGURES

Fig No.		Page
1	Effect of applying different GSSP mineral fertilizer coated	
	with vinasse (100%) or humic acid (20%) on the availability	
	of phosphorus in clay and sandy soils	26
2	Effect of applying different GSSP as mineral fertilizer alone	
	or coated with vinasse on straw yield of wheat plants grown	
	on a clay soil	33
3	Effect of applying different GSSP as mineral fertilizer alone	
	or coated with vinasse on grain yield of wheat plants grown	
	on a clay soil	34
4	Effect of applying different GSSP as mineral fertilizer alone	
	or coated with vinasse on phosphorus use efficiency	
	(PUE) of straw yield of wheat plants grown on a clay	
	soil	39
5	Effect of applying different GSSP as mineral fertilizer alone	
	or coated with vinasse on phosphorus use efficiency	
	(PUE) of grain yield of wheat plants grown on a clay	
	soil	39
6	Effect of applying different GSSP as mineral fertilizer	
	alone or coated with vinasse on straw yield of wheat	
	plants grown on a sandy soil	46
7	Effect of applying different GSSP as mineral fertilizer	
	alone or coated with vinasse on grain yield of wheat	
	plants grown on a sandy soil	47
8	Effect of applying different GSSP as mineral fertilizer alone	
	or coated with vinasse on phosphorus use efficiency	
	(PUE) of straw yield of wheat plants grown on a clay	
	soil	51