

Ain Shams Univeristy Faculty of Science Chemistry Department

Hydration Characteristics of Different Cementitious Materials in presence of Some Heavy Metals

A Thesis Submitted for

Ph.D. Degree in Chemistry

By Faten Abou El-Wafa Rayan Selim

M.Sc., (Chemistry), (2012)

Supervised By

Prof. Dr. Eisa El-Sayed Hekal

Professor of Physical Chemistry and Building Materials, Faculty of Science, Ain Shams University

Prof. Dr. Mohamed Abd El-Khalek Mohamed

Professor of Physical Chemistry, Faculty of Science, Ain Shams University

Dr. Mohamed El-Sayed Amin

Associated Professor of Physical Chemistry, Faculty of Science, Ain Shams University

Cairo - 2016

AIN SHAMS UNIVERSITY Faculty of Science Chemistry Department

Hydration Characteristics of Different Cementitious Materials in presence of Some Heavy Metals

Thesis Approved	Thesis Advisors
Prof. Dr. E. El-Sayed Hekal	•••••
Prof. Dr. M. Abd El-Khalek Mohamed	••••••
Dr. M. El-Sayed Amin	•••••

Prof. Dr. Ibrahim H. A. badr

Head of Chemistry Department

Praise and Thanks to be ALLAH, the most merciful for assisting and directing me to the right way.

I would like to submit my gratitude, sincere thanks and appreciation to **Prof. Dr. Eisa El-Sayed Hekal**, professor of Physical Chemistry and Building Materials, Faculty of Science, Ain Shams University, for suggesting the subject of this work, talented supervision and criticism, useful directions and valuable as well as fruitful discussion during all the steps of the study.

I greatly appreciate **Prof. Dr. Mohamed Abd El-Khalek Mohamed**, Professor of Physical Chemistry, Faculty of Science, Ain Shams University, for his valuable advice and constructive criticism throughout the thesis.

My deepest gratitude and appreciation to Dr. Mohamed El-Sayed Amin, Associated Professor of Physical Chemistry, Faculty of Science, Ain Shams University, for his deep concern in this work, brilliance and effort in guiding as well as encouraging for getting his always up towards success, continuous help and encouragement through the whole work.

ABBREVIATIONS 2016

Symbol	Description
C₃S	Tricalcium silicate (Alite)
$\beta - C_2S$	β – dicalcium silicate (Belite)
C ₃ A	Tricalcium aluminate
C ₄ AF	Tetracalciumaluminoferrite
OPC	Ordinary Portland cement
В	Bentonite
B-250 °C	Bentonite fired at 250°C
B-500 °C	Bentonite fired at 500°C
B-800 °C	Bentonite fired at 800°C
K	Kaolinite clay
MK	Metakaolin
XRD	X- ray diffraction
DTG	Differential thermal gravimetric
TG	Thermal gravimetric
SEM	Scanning electron microscope
CSH	Calcium silicate hydrate
СН	Calcium hydroxide
САН	Calcium aluminate hydrate
CASH	Calcium aluminate silicate hydrate
(C ₃ A.CaCl ₂ .11H ₂ O)	Mono chloro aluminate hydrate (fredil salt)

ABSTRACT 2016

Hydration Characteristics of Different Cementitious Materials in presence of Some Heavy Metals

Abstract:

characteristics of different hydration cementitious materials in absence and presence of Ni(II) or Cr(III) as chlorides were investigated by determination of compressive strength, combined water content, free lime content, XRD analysis, thermal analysis and microstructure investigation at different time intervals from 1 up to 90 days. In addition, the immobilization of nickel and chromium ions in the hardened OPC and blended cement pastes was examined. The different cement pastes used in this study were neat Portland cement, Portland cement blended with 20% bentonite caly and 20% bentonite fired at 250°C, 500°C and 800°C. Also, kaolin and metakaolin were used as blending materials with the ratios of 20, 40 and 80%. One ratio of each heavy metal ions (1.0%) of solid was used. The used metal salts caused acceleration effect for the hydration of most of the investigated cement pastes. The results of compressive strength, combined water, free lime contents and X-ray diffraction analysis were correlated to a good degree. The degree of immobilization of the added heavy metal ions is evaluated by determining the leached ion concentration after time intervals extended up to 30

ABSTRACT 2016

days. The leachability experiments are carried out by using the static mode of leaching process. It has been noticed that all the investigated cement pastes showed a high degree of immobilization for Ni²⁺ and Cr³⁺ ions.

Key words: Portland cement, heavy metals, hydration characteristics, Immobilization and leachability.

EFFECT OF NI (II) AND CR (III) ON THE HYDRATION CHARACTERISTICS OF PORTLAND CEMENT

Hekal, E. E.; M. Abd-El-Khalek; M. S. Amin and Faten A. Selim*
Chemistry Department, Faculty of science, Ain Shams University, Cairo, Egypt.

*Corresponding author: faten chem@yahoo.com

Key Words: Ordinary Portland Cement (OPC), heavy metals, Solidification /stabilization, Hydration characteristic of cement, Immobilization, phase composition and microstructure.

ABSTRACT

The hydration characteristics of ordinary Portland cement (OPC) in absence and presence of Ni(II) or Cr(III) are investigated as well as the immobilization of nickel and chromium ions in cement pastes is examined. The different cement pastes used in this study are Portland cement in absence and presence of NiCl₂ or CrCl₃. One ratio of Ni(II) and Cr(III) is used (1.0% by weight of the solid binder). The hydration characteristics of cement pastes are tested via the determination of the compressive strength, combined water content and free lime content at different time intervals from 1 up to 90 days. In addition; X-ray diffraction (XRD), Thermal analysis (DTG and TG) and scanning electron microscope (SEM) of some selected samples are investigated. The results show that the presence of NiCl₂ and CrCl₃ caused acceleration for the hydration of Portland cement paste. CrCl₃ caused acceleration more than NiCl₂. The degree of immobilization of the added heavy metal ions is very high in the investigated cement pastes.

INTRODUCTION

With the increasing contamination of the natural environment, the problem of heavy metal immobilization becomes more and more significant. Heavy metal pollution has become a major global problem, which threatens the environment and human life by its toxicity. Development of novel low-cost adsorbents for heavy metals removal has attracted great attention^[1]. Due to the increasing amount of usage of various metals in industries, their discharge into the environment has also increased steadily. This has led to the growing concern about polluting the overall environment and thus increasing the human intake of toxic elements such as cadmium, lead, mercury, arsenic, chromium, nickel, and antimony etc.

Various technologies have been developed to render a waste non-toxic or to reduce the potential for the release of toxic species into the environment. Cr³⁺ and Ni²⁺ are examples of these toxic heavy metals.

Acknoledgement	
Abbreviations	
Abstract	I-II
Contents	i-iii
A. List of Tables	iv-xii
B. List of Figures	xiii-xviii
Chapter I: Introduction and object of investigation	
IA. Introduction	1
IB. Literaure survey	3
IB.1. Studies on bentonite	3
IB.2. Uses of bentonite in removal of heavy metals	20
IB.3. Studies on kaolinite clay	31
IB.4. Uses of kaolinite clay in removal of heavy metals	44
IB.5. Uses of other materials in removal of heavy metals	52
IC. Object of investigation	75
Chapter II: Materials and experimental techniques	
IIA.Starting materials	77-82
IIB. Experimental techniques	83-89
IIB.1. Mixing procedure	83
IIB.2. Methods of investigation	84
IIB.2.1. Compressive strength	84
IIB.2.2 Kinetics of hydration	85
IIB.2.2.i. Stopping of hydration	85
IIB.2.2.ii Determination of the chemically-combined water content (Wn, %)	86
IIB.2.2.iii. Determination of the free lime content (CaO, %)	86
IIB.3. X-ray Diffraction (XRD) analysis	87
IIB.4. Scanning electron microscope (SEM)	88
IIB.5. Thermal analysis	88
IIB.6. Leaching test	89

Chapter III: Results and discussion	
Hydration characteristics of some blended cement pastes containing	90-246
heavy metals IIIA. Portland cement pastes	91
IIIA.1. Compressive strength	91
IIIA.2. Kinetics of hydration	94
IIIA.2.i. Chemically combined water content (Wn,%)	94
IIIA.2.ii. Free lime content (CaO, %)	97
IIIA.3. Phase composition (XRD analysis)	99
IIIA.4. Thermal analysis	102
IIIA.5. Morphology and microstructure (SEM)	106
IIIA.6. Leaching Behaviour	110
IIIA.6.i. pH measurements	110
IIIA.6.ii. Leaching percent	112
IIIA.6.iii. Degree of Immobilization	112
IIIB. Portland cement-Bentonite blends	114
IIIB.1. Compressive strength	115
Strength activity index	120
IIIB.2. Chemically combined water content (Wn,%)	132
IIIB.3. Free lime content (CaO, %)	142
IIIB.4. Phase composition (XRD analysis)	152
IIIB.5. Thermal analysis	155
IIIB.6. Morphology and microstructure (SEM)	158
IIIB.7. Leaching Behaviour	161
IIIB.7.i. pH measurements	161
IIIB.7.ii. Leaching percent	161
IIIB.7.iii. Degree of Immobilization	164
IIIC. Portland cement-Kaolinite blends	165
IIIC.1. Compressive strength	165
Strength activity index	168
IIIC.2. Chemically combined water content (Wn,%)	175
IIIC.3. Free lime content (CaO, %)	183

LIST OF CONTENTS	Page
	190
IIIC.4. Phase composition (XRD analysis)	
IIIC.5. Thermal analysis	193
IIIC.6. Morphology and microstructure (SEM)	197
IIIC.7. Leaching Behaviour	199
IIIC.7.i. pH measurements	199
IIIC.7.ii. Leaching percent	199
IIIC.7.iii. Degree of Immobilization	202
IIID. Portland cement-Metakaolinite blends	203
IIID.1. Compressive strength	203
Strength activity index	207
IIID.2. Chemically combined water content (Wn,%)	215
IIID.3. Free lime content (CaO, %)	223
IIID.4. Phase composition (XRD analysis)	230
IIID.5. Thermal analysis	234
IIID.6. Morphology and microstructure (SEM)	238
IIID.7. Leaching Behaviour	242
IIID.7.i. pH measurements	242
IIID.7.ii. Leaching percent	243
IIID.7.iii. Degree of Immobilization	245
Summary and conclusion	247
References	259
Appendix	285
Arabic Summary	أ _ ث

Table Number	Title of Table	Page Number
Chapter	II: Materials and experimental techniques	
1	Chemical oxide composition of the starting	78
	materials, mass %.	
2	The composition and designation of the different mixes, wt, %.	81
Chapter	III: Results and discussion	
3	Compressive strength (kg/cm ²) of mixes I, IA and IB, 100% OPC in absence and presence of Ni(II) and Cr(III) chlorides, respectively at	93
	various hydration ages	
4	Combined water content of mixes I, IA and IB, 100% OPC in absence and presence of Ni(II) and Cr(III) chlorides, respectively at various hydration ages	96
5	Free lime content of mixes I, IA and IB, 100% OPC in absence and presence of Ni(II) and Cr(III) chlorides, respectively at various hydration ages	98
6	Leaching percent of Ni(II) ions concentration of hardened cement paste 100% OPC in presence of 1.0% Ni(II), (static mode) at various leaching times	111
7	The immobilization percentage of Ni(II) ions of hardened cement paste 100% OPC in presence of 1.0% Ni(II), (static mode) at various leaching times	111
8	Compressive strength (kg/cm²) of the hardened blended cement pastes of mixes I, II, III, IV and V containing 20% raw bentonite, 20% B-250°C, 20% B-500°C and 20% B-800°C, respectively at various hydration ages.	119
9	Strength activity index (kg/cm²) of the hardened blended cement pastes of mixes I, II,	122

	III, IV and V containing 20% raw bentonite,	
	20% B-250°C, 20% B-500°C and 20% B-800°C,	
	respectively at various hydration ages	
10	Compressive strength (kg/cm ²) of the hardened	126
	blended cement pastes of mixes II, IIA and IIB	
	in absence and presence of Ni(II) and Cr(III)	
	chlorides, respectively at various hydration	
	ages	
11	Compressive strength (kg/cm ²) of the hardened	127
	blended cement pastes of mixes III, IIIA and	
	IIIB in absence and presence of Ni(II) and	
	Cr(III) chlorides, respectively at various	
	hydration ages	120
12	Compressive strength (kg/cm ²) of the hardened	130
	blended cement pastes of mixes IV, IVA and	
	IVB in absence and presence of Ni(II) and	
	Cr(III) chlorides, respectively at various	
	hydration ages	121
13	Compressive strength (kg/cm ²) of the hardened	131
	blended cement pastes of mixes V, VA and VB	
	in absence and presence of Ni(II) and Cr(III)	
	chlorides, respectively at various hydration	
11	ages	124
14	Combined water content of the hardened	134
	blended cement pastes of mixes I, II, III, IV and	
	V containing 20% raw bentonite, 20% B-250°C, 20% B-500°C and 20% B-800°C,	
	respectively at various hydration ages	
15	Combined water content of the hardened	137
10	blended cement pastes of mixes II, IIA and IIB	137
	in absence and presence of Ni(II) and Cr(III)	
	chlorides, respectively at various hydration	
	ages	
16	Combined water content of the hardened	138
	blended cement pastes of mixes III, IIIA and	

	IIIB in absence and presence of Ni(II) and Cr(III) chlorides, respectively at various	
	hydration ages	
17	Combined water content of the hardened blended cement pastes of mixes IV, IVA and IVB in absence and presence of Ni(II) and Cr(III) chlorides, respectively at various hydration ages	139
18	Combined water content of the hardened blended cement pastes of mixes V, VA and VB in absence and presence of Ni(II) and Cr(III) chlorides, respectively at various hydration ages	140
19	Free lime content of the hardened blended cement pastes of mixes I, II, III, IV and V containing 20% raw bentonite, 20% B-250°C, 20% B-500°C and 20% B-800°C, respectively at various hydration ages	143
20	Free lime content of the hardened blended cement pastes of mixes II, IIA and IIB in absence and presence of Ni(II) and Cr(III) chlorides, respectively at various hydration ages	148
21	Free lime content of the hardened blended cement pastes of mixes III, IIIA and IIIB in absence and presence of Ni(II) and Cr(III) chlorides, respectively at various hydration ages	149
22	Free lime content of the hardened blended cement pastes of mixes IV, IVA and IVB in absence and presence of Ni(II) and Cr(III) chlorides, respectively at various hydration ages	150
23	Free lime content of the hardened blended cement pastes of mixes V, VA and VB in	151

	absence and presence of Ni(II) and Cr(III)	
	chlorides, respectively at various hydration	
	ages	
24	Leaching percent of Ni(II) ions concentration	163
	for hardened blended cement mixes IA, IIA,	
	IIIA, IVA and VA containing 1.0 % Ni(II),	
	(static mode) at various leaching times	
25	The immobilization percentage of Ni(II) ions	164
	for mixes IA, IIA, IIIA, IVA and VA containing	
	1.0 % Ni(II), (static mode) at various leaching	
	times	
26	Compressive strength (kg/cm ²) of the hardened	167
	blended cement pastes of mixes I, VI, VII and	
	VIII containing 0, 20, 40 and 80% kaolin,	
	respectively at various hydration ages	
27	Strength activity index (kg/cm ²) of the	169
	hardened blended cement pastes of mixes I, VI,	
	VII and VIII containing 0, 20, 40 and 80%	
	kaolin, respectively at various hydration ages	
28	Compressive strength (kg/cm ²) of the hardened	171
	blended cement pastes of mixes VI, VIA and	
	VIB in absence and presence of Ni(II) and	
	Cr(III) chlorides, respectively at various	
	hydration ages	450
29	Compressive strength (kg/cm ²) of the hardened	173
	blended cement pastes of mixes VII, VIIA and	
	VIIB in absence and presence of Ni(II) and	
	Cr(III) chlorides, respectively at various	
20	hydration ages Compressive strength (leg/om²) of the handened	1774
30	Compressive strength (kg/cm ²) of the hardened	174
	blended cement pastes of mixes VIII, VIIIA	
	and VIIIB in absence and presence of Ni(II)	
	and Cr(III) chlorides, respectively at various	
21	hydration ages Combined water centent of the hardened	170
31	Combined water content of the hardened	179