

Ain Shams University Faculty of Science Biochemistry Department

Biochemical studies on palm date seeds (*Phoenix dactylifera L.*) in a diabetic rat model

A Thesis

Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science in Biochemistry

Submitted by

Sara Mahmoud Hamdy Ahmed Baraka

Chemistry of Natural Compounds Department-National Research Centre B.Sc. in Chemistry & Biochemistry (2011) Faculty of Science, Zagazig University

Under Supervision of

Prof. Dr. Amina M. Medhat

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Farouk R. Melek

Professor of Chemistry of Natural Compounds Chemistry of Natural Compounds Department National Research Centre

Dr. Neveen S. Ghalv

Assistant Professor of Chemistry of Natural Compounds Chemistry of Natural Compounds Department National Research Centre

> Biochemistry Department Faculty of Science Ain Shams University 2016

Declaration

I declare that this thesis has been composed and the work recorded here in has been done by myself.

It has not been submitted for any other degree at this or any other university.

Sara Baraka

DEDICATION

First and foremost, I have to thank my loving parents for their endless love, support and encouragement. I am honored to have you as my parents. I would like to dedicate my sisters and my brothers for their unconditional support to complete this work.

I also dedicate this thesis to my husband who has been a constant source of support.

I am thankful to my loving son for giving me happiness in my life. I am truly thankful for having you in my life.

ACKNOWLEDGMENT

This master thesis would never have been completed without the efforts of several people who really I appreciate their instructive support.

I would like to express my deep appreciation and gratitude to **Prof. Dr. Amina M. Medhat**, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for her valuable support and kind supervision.

My special thanks are due to **Prof. Dr. Farouk R. Melek**, Professor of Chemistry of Natural Compounds, Chemistry of Natural Compounds Department, National Research Centre for suggesting the subject, kind advice and supervision.

I am grateful to **Dr. Neveen S. Ghaly**, Assistant Professor of Chemistry of Natural Compounds, Chemistry of Natural Compounds Department, National Research Centre for her assistance to complete this work and instructive guidance.

No words can express my sincere gratitude to **Dr. Dalia O. Saleh**, Researcher of Pharmacology Department, National Research Centre for her guidance and for helping and assisting me during the research activities. I will always remember her with respect.

I am greatly indebted to **Prof. Dr. Abdel Razik Farrag**, Professor of Histology and Histochemistry, Pathology Department, National Research Centre who helped me to complete this work.

I would like to thank **Prof. Dr. Esam Shaban**, Fruit research Department, National Research Centre for helping me in this research.

I would like to thank the team of GC/MS laboratory and AAS laboratory, Central Scientific Services Unit, National Research Centre and the team of HPLC laboratory, Food Technology Research Institute, Agricultural Research Centre.

I am grateful to my all colleagues at Chemistry of Natural Compounds Department, National Research Centre for their support and help during this work.

Sara Baraka

Contents

Item No.	Subject	Page
	List of Abbreviations	I
	List of Figures	III
	List of Tables	VII
	Abstract	VIII
	Aim of the Work	IX
1.	Review of Literature	1
1.1.	Diabetes mellitus	1
1.1.1.	Pathophysiology of diabetes mellitus	1
1.1.2.	Classification of diabetes mellitus	2
1.1.3.	Diagnosis of diabetes mellitus	5
1.1.4.	Clinical features of diabetes mellitus	6
1.1.5.	Complications of diabetes mellitus	7
1.1.6.	Oxidative stress and diabetes mellitus	8
1.1.7.	Therapy for diabetes mellitus	9
1.1.7.1.	Oral hypoglycemic drugs	9
1.1.7.2.	Insulin therapy	12
1.1.7.3.	Antidiabetic medicinal plants	13
1.2.	Palm Date	23
1.2.1.	Scientific classification	24
1.2.2.	Phytochemical constituents of palm date	25
1.2.3.	Biological activities of <i>Phoenix dactylifera L</i>	25
2.	Materials and Methods	28
2.1.	Phytochemical studies	28
2.1.1.	Materials	28
2.1.1.1.	Plant material	28
2.1.1.2.	Chemicals and solvents	28
2.1.2.	Methods	28
2.1.2.1.	Seed preparation	28
2.1.2.2.	Seed oil extraction and examination	28
2.1.2.3.	Preparation and quantitative estimation of	
	elements	30
2.1.2.4.	Determination of total protein content	31

2.1.2.5.	Determination of phenolic compounds	32
2.1.2.6.	Estimation of carbohydrate content	32
2.2.	Biological studies	33
2.2.1.	Materials	33
2.2.1.1.	Experimental animals	33
2.2.1.2.	Reference drug	33
2.2.2.	Methods	33
2.2.2.1.	Seed extracts preparation	33
2.2.2.2.	Acute toxicity test	33
2.2.2.3.	Induction of diabetes mellitus	34
2.2.2.4.	Experimental design	34
2.2.2.5.	Determination of biochemical parameters	35
2.2.2.5.1.	Determination of serum glucose level	35
2.2.2.5.2.	Determination of serum C-Peptide level	36
2.2.2.5.3.	Determination of serum α -amylase level	39
2.2.2.5.4.	Determination of serum malondialdehyde	
	level	41
2.2.2.5.5.	Determination of serum reduced glutathione	
	level	42
2.2.2.5.6.	Determination of serum total antioxidant capacity	
	level	43
2.2.2.5.7.	Determination of serum triglycerides level	45
2.2.2.5.8.	Determination of serum total cholesterol level	46
2.2.2.6.	Histopathological studies	48
2.3.	Statistical analysis	48
3.	Results	49
3.1.	Phytochemical studies	49
3.1.1.	GC/MS analysis of fatty acids composition	49
3.1.2.	HPLC analyses	52
3.1.2.1.	Determination of phenolic compounds	52
3.1.2.2.	Determination of carbohydrate content	53
3.1.3.	Elemental analysis and protein content	55
3.2.	Biological studies	56
3.2.1.	Acute toxicity	56
3.2.2.	Metabolic parameters	56
3.2.2.1.	Determination of serum glucose	56

Contents

	Arabic Abstract Arabic Summary	
6.	References	92
5.	Summary	89
4.	Discussion	73
3.3.2.	Pancreas	69
3.3.1.	Liver	65
3.3.	Histopathology findings	65
3.2.4.2.	Determination of serum TC	62
3.2.4.1.	Determination of serum TG	62
3.2.4.	Lipid profile parameters	62
3.2.3.3.	Determination of serum TAC	59
3.2.3.2.	Determination of serum GSH	59
3.2.3.1.	Determination of serum MDA	59
3.2.3.	Lipid peroxidation and oxidative stress biomarkers	59
3.2.2.3. 3.2.3.	Determination of serum α-amylase	56
3.2.2.2.	Determination of serum C-Peptide	56

LIST OF ABBREVIATIONS

AAS Atomic Absorption Spectrophotometer

Absorbance of blank
ADP Adenosine diphosphate

AGEs Advanced glycation end products

Al Alcohol AP Aerial Parts Aq Aqueous

AsampleAbsorbance of sampleAstandardAbsorbance of standardATPAdenosine triphosphate

B Bark

b.w. Body weight

C Corm

Chlf Chloroform

CoA-SH Coenzyme A reduced form

CoA-S-G Coenzyme A Glutathione Disulfide

CV Central vein

DCM DichloromethaneDM Diabetes mellitus

E Ethanol

ELISA Enzyme-linked immune-sorbent assay

Ethl.ac Ethyl acetate ev Electron volt

FAME Fatty acid methyl esters

Fl Flower
Fr Fruit
G Grain

GC/MS Gas Chromatography - Mass Spectrum

GLZ Gliclazide

GSH Reduced Glutathione

H Hexane

H₂O₂ Hydrogen peroxide HbA1c Hemoglobin A1c

HC Hepatocytes

HPLC High performance liquid chromatography

HS Hepatic sinusoids

L Leaf

M Methanol

MDA Malondialdehyde

N Nuts

NADPH Nicotinamide Adenine Nucleotide Phosphate

(reduced form)

NF-κB Nuclear factor-kappa B

NO Nitric oxide NS Non-significant

P Peel

P. dactylifera Phoenix dactylifera

PDHE Hayany cultivar seed extract
PDSE Sammany cultivar seed extract

PE Petroleum Ether

R Root Rh Rhizome

ROS Reactive Oxygen Species

S Seed

SD Standard deviation

Se Sepal

SE Standard error

Stem Stem

STZ Streptozotocin

TAC Total Antioxidant Capacity

TC Total cholesterol
TDZs Thiazolidinediones

TG Triglycerides
TN Total nitrogen
WP Whole plant

LIST OF FIGURES

Figure	Title	Page
Figure (1)	Pathophysiology of diabetes mellitus	2
Figure (2)	Symptoms of diabetes mellitus	6
Figure (3)	Standard curve of C-Peptide	39
Figure (4)	Standard curve of MDA	42
Figure (5)	GC chromatogram of fatty acid methyl esters of	49
	Sammany cultivar	
Figure (6)	GC chromatogram of fatty acid methyl esters of	49
	Hayany cultivar	
Figure (7)	HPLC chromatogram for phenolic compounds of	52
	Sammany cultivar	
Figure (8)	HPLC chromatogram for phenolic compounds for	52
	Hayany cultivar	
Figure (9)	HPLC chromatogram for sugar constituents of	54
	Sammany cultivar	
Figure (10)	HPLC chromatogram for sugar constituents of Hayany	54
	cultivar	
Figure (11)	Percentage change of serum glucose in the different	58
	studied groups compared to diabetic control	
Figure (12)	Percentage change of serum C-Peptide (a), α-amylase	58
	(b) in the different studied groups compared to	
	diabetic control	
Figure (13)	Percentage change of serum MDA in the different	61
	studied groups compared to diabetic control	
Figure (14)	Percentage change of serum GSH (a), TAC (b) in the	61
	different studied groups compared to diabetic control	
Figure (15)	Percentage change of serum TG in the different	64
	studied groups compared to diabetic control	
Figure (16)	Percentage change of serum TC in the different	64
	studied groups compared to diabetic control	
Figure (17)	A section of control liver, (a) shows the normal	66