EVALUATION OF HIGH RISE CONCRETE STRUCTURES BEHAVIOR UNDER SEISMIC LOADS USING PERFORMANCE BASED METHOD

By

Elhussein Ibrahim Elsayed Elsayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE In STRUCTURAL ENGINEERING

EVALUATION OF HIGH RISE CONCRETE STRUCTURES BEHAVIOR UNDER SEISMIC LOADS USING PERFORMANCE BASED METHOD

By

Elhussein Ibrahim Elsayed Elsayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE In STRUCTURAL ENGINEERING

Under the supervision of

Prof. Dr. Sherif Ahmed Mourad

Professor of Steel Structures and Bridges
Structural Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

EVALUATION OF HIGH RISE CONCRETE STRUCTURES BEHAVIOR UNDER SEISMIC LOADS USING PERFORMANCE BASED METHOD

By

Elhussein Ibrahim Elsayed Elsayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Sherif Ahmed Mourad, Thesis Advisor

Structural Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Wael Muhammed El-Degwy, Examiner

Structural Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Emad Elsayed Etman, Examiner

Structural Engineering Department Faculty of Engineering, Tanta University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014 Engineer: Elhussein Ibrahim Elsayed Elsayed

Date of Birth: 1 / 1 / 1983 **Nationality:** Egyptian

E-mail: elhussin.ibrahim@yahoo.com

Phone.: 01222759140

Address: 52 – 3rd settlement – New Cairo, Cairo

Registration Date: 1/10/2009

Awarding Date: / / Degree: Master of Science

Department: Structural Engineering

Supervisors: Prof. Dr. Sherif Ahmed Mourad

Examiners: Prof. Dr. Sherif Ahmed Mourad

Prof. Dr. Wael Mohamed Eldegwy Prof. Dr. Emad Elsayed Etman

(Professor of concrete structures – Faculty of Engineering – Tanta University)

Title of Thesis: EVALUATION OF HIGH RISE CONCRETE STRUCTURES BEHAVIOR UNDER SEISMIC LOADS USING PERFORMANCE BASED METHOD

Key Words: (Performance Based, Time History, Nonlinear analysis, Force Based and

Seismic Behavior)

Summary:

Seismic design has undergone a remarkable development during the past decades. A simple approach may be established using equivalent static load method. A more elaborate modelling may be achieved by a dynamic time history analysis to improve the judgment on structures behavior during earthquakes. A parametric study was conducted for different (RC) structures. These structures were firstly designed according to the (IBC) code requirements, and then were evaluated using performance based method by subjecting them to earthquake ground motions to come up with conclusions to be taken into consideration during the design process.

Acknowledgement

First of all, I would like to convey my warmest gratitude to my supervisor professor Dr. Sherif Ahmed Mourad, who gave me the opportunity to conduct my study under his supervision, and for his guidance, generous contribution of knowledge and experience, valuable comments and encouragement from the start until the end of my study. Also my deepest respect, love and gratitude to my Uncle Mr. Mahmoud Zaki, who taught me so many things. May God bless his soul in Heaven.

Table of Contents

	Page
Acknowledgment	i
Table of Contents	ii
List of Figures	v
List of Tables	viii
List of Abbreviations	ix
Abstract	xi
Chapter 1 - Introduction	1
1.1 General Background	1
1.2 Problem Statement	2
1.3 Scope and Methodology	10
1.4 Outline of Thesis	10
Chapter 2 - Literature Review	13
2.1 Introduction	13
2.2 Lateral Force Resisting Systems	14
2.2.1 Passive Control	15
2.2.2 Active Control	16
2.3 Seismic Analysis Methods	17
2.3.1 Linear Static Procedure (LSP)	18
2.3.2 Linear Dynamic Procedure (LDP)	18
2.3.3 Nonlinear Static Procedure (NSP)	19
2.3.4 Nonlinear Dynamic Procedure (NDP)	20
2.4 Code Provisions for Force Based Seismic Design Approach	20
2.5 Structures Performance in Earthquakes	23

2.5.1 Performance Levels	23
2.5.2 Seismic Hazard Levels	25
2.5.3 Alternative Approaches	27
2.5.4 Structural Limit States and Criteria for Displacement Based Designation	gn 28
2.6 Organization of Design Procedures	33
2.6.1 Criteria1: Role of Displacement in the Design Process	33
2.6.2 Criteria 2: Type of Analysis Used in the Design Process	36
2.6.3 Criteria 3: Structural Type Limitations	37
2.6.4 Criteria 4: Limit State Limitations	37
2.6.5 Matrix Representations of Design Procedures	37
2.7 Displacement Based Design Procedures Narrative	39
2.7.1 Direct Displacement Based Design	39
2.7.2 Capacity Spectrum Method	40
2.7.3 Deformation Controlled Design	42
2.7.4 Advanced Analysis Based Design	43
2.7.5 Yield Point Method	45
2.7.6 Substitute Structure Design Method	46
2.7.7 Target Period Method	46
2.7.8 UBC Structural Wall Method	47
Chapter 3 - Research Methodology	49
3.1 Introduction	49
3.2 Finite Element and Design Software	49
3.3 Modeling Criteria	52
3.3.1 Geometry	52
3.3.2 Material	55
3.3.3 Loads	55

Appendix A	A-1
References	101
5.3 Future Research Work	99
5.2 Conclusions	98
5.1 Summary	97
Chapter 5 - Summary and Conclusion	97
4.4.8 Plastic Hinge Length and (D/C) Ratios	95
4.4.7 Columns Axial Bending Deformation	94
4.4.6 Beams Bending Deformation	93
4.4.5 Coupling Beams Shear Deformation	90
4.4.4 Shear Walls Shear Strength	88
4.4.3 Shear Walls Bending Rotation	85
4.4.2 Shear Walls Axial Compression Strain	83
4.4.1 Shear Walls Axial Tension Strain	80
4.4 Evaluation of Structure and Demand Capacity Ratios	80
4.3 Components Demand – Capacity Ratios	78
4.2 Structural Time Period	75
4.1 Introduction	75
Chapter 4 - Analysis and Results	75
3.8 Analysis and Results	72
3.7 Analysis Assumptions	70
3.6 Performance Level and Intended Behavior	68
3.5 Force Controlled vs. Deformation Controlled Components	67
3.4.2 Performance Based Seismic Design Approach	64
3.4.1 Forced Based Seismic Design Approach	56
3.4 Research Methodology	56

List of Figures

		Page
Figure 1.1	Global Tectonic Plate Boundaries	1
Figure 1.2	Conceptual Basis Use of (R) Factors	5
Figure 1.3	Defining Ductility Capacity	8
Figure 2.1	Force Based Design Approach Flow Chart	22
Figure 2.2	Performance Levels and Relative Damage	25
Figure 2.3	Performance Matrix of Version 2000	27
Figure 2.4	Relation between Displacement and Damage	28
Figure 2.5	Displacement Based Design Approaches Flowcharts	35
Figure 3.1	High Rise (RC) Structures with Different Heights	53
Figure 3.2	Shear Wall System Floor Layout	54
Figure 3.3	Dual System Floor Layout	54
Figure 3.4	Design Response Spectrum	59
Figure 3.5	Columns Cross Sections	61
Figure 3.6	Shear Wall System Cross Sections	62
Figure 3.7	Dual System Cross Sections	62
Figure 3.8	Action-Deformation Relationship	65
Figure 3.9	Confined Concrete Stress -Strain Curve	66
Figure 3.10	Unconfined Concrete Stress -Strain Curve	66
Figure 3.11	Rebar Stress -Strain Curve	67
Figure 3.12	Component Force vs. Deformation Curves	67
Figure 3.13	Elcentro 1940 N-S Component	73
Figure 3.14	Northridge 1994 N-S Component	73

Figure 3.15	Kobe 1995 Component	74
Figure 4.1	Fundamental Period Values for Shear Wall System	77
Figure 4.2	Fundamental Period Values for Dual System	78
Figure 4.3	Pushover Curve for the 20th Stories Shear Wall System	80
Figure 4.4	Tension Strain for Shear Walls System in X-Direction	81
Figure 4.5	Tension Strain for Shear Walls System in Y-Direction	81
Figure 4.6	Tension Strain for Dual System in X-Direction	82
Figure 4.7	Tension Strain for Dual System in Y-Direction	82
Figure 4.8	Compression Strain for Shear Walls System in X-Direction	83
Figure 4.9	Compression Strain for Shear Walls System in Y-Direction	84
Figure 4.10	Compression Strain for Dual System in X-Direction	84
Figure 4.11	Compression Strain for Dual System in Y-Direction	85
Figure 4.12	Walls Bending Rotation for Shear Walls System in X-Direction	86
Figure 4.13	Walls Bending Rotation for Shear Walls System in Y-Direction	86
Figure 4.14	Walls Bending Rotation for Dual System in X-Direction	87
Figure 4.15	Walls Bending Rotation for Dual System in Y-Direction	87
Figure 4.16	Walls Shear Strength for Shear Walls System in X-Direction	89
Figure 4.17	Walls Shear Strength for Shear Walls System in Y-Direction	89
Figure 4.18	Walls Shear Strength for Dual System in X-Direction	9(
Figure 4.19	Walls Shear Strength for Dual System in Y-Direction	9(
Figure 4.20	Spandrels Deformation for Shear Walls System in X-Direction	91
Figure 4.21	Spandrels Deformation for Shear Walls System in Y-Direction	91
Figure 4.22	Spandrels Deformation for Dual System in X-Direction	92
Figure 4.23	Spandrels Deformation for Dual System in Y-Direction	92
Figure 4.24	Beams Bending Rotation for Dual System in X-Direction	93

Figure 4.25	Beams Bending Rotation for Dual System in Y-Direction	93
Figure 4.26	Columns Bending Rotation for Dual System in X-Direction	94
Figure 4.27	Columns Bending Rotation for Dual System in Y-Direction	95

List of Tables

		Page
Table 1.1:	Different Fundamental Periods of Wall Buildings	6
Table 1.2:	Maximum Force-Reduction Factors in Different Countries	8
Table 2.1:	Matrix of Design Procedures	37
Table 2.2:	Matrix Methods and Contributions	38
Table 3.1:	Dead & Live Loads for Typical Floors	55
Table 3.2:	Systems Characteristic Analysis Parameters	58
Table 3.3:	Response Spectrum Analysis Parameters	60
Table 3.4:	Shear Wall Dimensions for Shear Wall Systems	63
Table 3.5:	Shear Wall Reinforcement for Shear Wall Systems	63
Table 3.6:	Shear Wall Dimensions for Dual Systems	63
Table 3.7:	Elements Types and Modeling Criteria	69
Table 3.8:	Inelastic Measures and Deformation Capacities Values	69
Table 3.9:	Time History Earthquake Motions Characteristics	72
Table 4.1:	ETABS vs. (IBC-12) Time Periods	76
Table 4.2:	PERFORM 3D vs. (IBC-12) Time Periods	76

List of Abbreviations

ADRS Acceleration Displacement Response Spectrum

ASCE American Society of Civil Engineers

ATC Applied Technology Council

CEN European Committee for Standardization

CQC Complete Quadratic Combination

CSI Computer and Structure Institute

CSM Capacity Spectrum Method

DCB Deformation Calculation Based

DDSB Direct Deformation Specification Based

FBSD Force Based Seismic Design

FEMA Federal Emergency Management Agency

IBC International Building Code

ICBO International Conference of Building Officials

IDSB Iterative Deformation Specification Based

LDP Linear Dynamic Procedure

LFRS Lateral Force Resisting System

LSP Linear Static Procedure

MDOF Multi Degree of Freedom

NDP Nonlinear Dynamic Procedure

NEHRP National Earthquake Hazards Reduction Program

NSP Nonlinear Static Procedure

OMRF Ordinary Moment Resisting Frame

PBSD Performance Based Seismic Design

PEER Pacific Earthquake Engineering Research Center

PGA Peak Ground Acceleration

PGD Peak Ground Displacement

PGV Peak Ground Velocity

RC Reinforced Concrete

SDOF Single Degree of Freedom

SEAOC Structural Engineers Association of California

SMRF Special Moment Resisting Frame

SRSS Square Root of the Sum of the Squares

UBC Uniform Building Code

ZPA Zero Period Acceleration

Abstract

Structures seismic design has undergone a remarkable development during the past decades. A simple approach may be established using equivalent static load method. This approach was improved by utilizing the response spectrum method, and introducing the response modification factor (R) to capture the structure ductility and inelastic behavior, where structure can dissipate the absorbed energy from earthquakes via concrete cracks and yielding of reinforcement. A more elaborate modelling may be achieved by a dynamic time history analysis to improve the engineering judgment on structures behavior during earthquakes. The current design philosophy, included in the majority of international codes as well as the Egyptian code for loads, was based on the "force based approach" in which the design safety is reached when the requirements of resistance, ductility and equilibrium limit state conditions are achieved. Serviceability limit state conditions of deformations and drifts are checked at the end of the design process.

Recently, in an attempt to reach a more realistic design, another design philosophy called "Performance based approach" was introduced. Performance based approach focuses on the structural performance during earthquake. One of the major benefits of the performance based approach is achieving the uniform risk principle in structures seismic design, which is not provided by implementing the traditional force based approach. This research includes evaluation of seismic behavior of two types of reinforced concrete high rise buildings: one of them is shear wall system and the other one is dual system comprised of shear walls in addition to ordinary reinforced concrete moment resisting frames. A detailed parametric study was conducted for these different lateral load resisting systems. These structures were firstly designed according to the international building code (IBC) requirements, and then their performance was checked by subjecting them to three earthquake ground motions as will be fully described in the research methodology. Final conclusions will be highlighted based on a full sets of results and discussion.