

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

Studies on Compounds with Antioxidant Properties Isolated from some Aromatic Plants

Thesis by

Ahmed Hassan Ragb El-Ghorab (M.Sc.) Researcher Assistant, Flavour and Aroma Dept. National Research Centre

Submitted For the Fullfilment of PhD. In Chemistry

Supervised By

Prof. Dr. Abed El-Fattah Fadel Vice Dean Faculty of Science Zagazig University (Benha),

Prof. Dr. Ahmed M. Gad Flavour and Aroma Dept., National Research Centre

Prof. Dr. Abdalla El-Sawy Head of Chemistry Dept., Faculty of Science, Zagazig University (Benha)

Prof. Dr. Hoda H.M. Fadel Head of Flavour and Aroma Dept. National Research Centre

Prof. Dr. Friedhelm Marx
Institut Fur Lebensmittelwissenschaft
und Lebensmittelchemie
Bonn University
Germany

Acknowledgment

The author wishes to express his thanks and gratitude to *Prof. Dr.*Abdalla El-Sawy, head, Chemistry Dept., Faculty of Science, Zagazig university (Benha), to *Prof. Dr.* Abed El-Fattah Fadel, Vice Dean, Faculty of Science, Zagazig University and to *Prof. Dr.* Ahmed M. Gad Flavour and Aroma Dept., National Research Center, for their encouragement, invaluable advice and helpful discussion.

Grateful acknowledgment and special thanks are expressed to *Prof. Dr.* Hoda H.M. Fadel, head, Flavour and Aroma Dept. National Research Center, for suggesting the topic of this work, careful guidance, supervision and valuable discussion.

Thanks are also given to *Prof. Dr.* Friedhelm Marx, Institut fur Lebensmittelwissenschaft und Lebensmittelchemie, Bonn University, Germany, for kindly accommodating me in his department, for his sincere supervision, valuable discussion and help during my stay in germany.

Thanks are also given to all my colleagues in the N.R.C., Egypt and in Bonn University and in particular to *Dr.* Khaled Farouk El-Masry, for undertaking the toxicological part of this study.

Grateful acknowledgment is expressed for the facilities offered by the N.R.C. (Egypt) which enabled me to participate in this work.

CONTENTS

	Pag
1 - AIM AND SCOPE OF THE WORK	1
2 - REVIEW OF LITERATURE	3
2.1 - Introduction	3
2.2 - The extraction methods of essential oils and semi-volatil	e ·
compounds	. 4
2.3- The chemistry of essential oils	8
2.3.1- Hydrocarbons of the general formula (C_5H_8) $_n$ - th	e
terpenes	8
2.3.2- Oxygenated derivatives of these hydrocarbons	8
2.3.3- Aromatic compounds having a benzenoid	
structure	9
2.3.4 - Compounds containing nitrogen or sulphur	9
2.4 - Variations of the chemical composition of essential oil	s within
a plant subfamily(especially Eucalyptus) independence	of the
species	10
2.5 - The effect of the climate conditions on the chemical	
composition of essential oils from Eucalyptus species:	12
2.6- Antioxidant activity of essential oils and non-volatile	
compounds	13
2.6.1- The mechanism of antioxidant reactions	13

	Page
2.6.1.1- Initiation of autoxidation	15
2.6.1.2- Propagation and termination of autoxidation	18
2.6.2 - Prevention of autoxidation and use of antioxidants	18
3 - MATERIALS AND METHODS	30
3.1- Materials	30
3.2- Methods	30
3.2.1- Hydrodistillation (HD)	30
3.2.2- Solvent extraction	30
3.2.3- Soxhlet extraction	31
3.2.4 - Supercritical fluid extraction (SFE)	31
3.2,4.1- SFE without modifier addition	31
3.2.4.2- SFE with modifier addition	31
3.2.5 – Toxicological method	٠
3.2.5 - Determination of the acute median lethal doses (LD ₅₀) in
rats	33
3.3 - Column chromatography	33
3.4 - Gas chromatography-mass spectrophotometry (GLC-MS) analysis	
3.5- High performance liquid chromatography (HPLC)	35
3.5.1- Analytical HPLC	35
3.5.2- Semipreparative HPLC	36
3.5.3- HPLC with diode array detector	36
3.5.4- HPLC-MS thermospray	36
3.6 - Method of silylation	36
3.7 - Determination of antioxidant activity by the thiocyanate method	37
3.8 - Infrared spectrophotometry (IR)	37
3.9 - MS (high resolution)	37

	Page
3.10 - Nuclear magnetic resonance spectrometry (NMR)	37
4 - RESULTS AND DISCUSSION	38
4.1- The identification and antioxidant activities of essential oil of $m{E}$.	
camaldulensis var. brevirostris leafs	38
4.1.1- Chemical composition of the HD and SFE extracts	38
4.1.2- Antioxidant activity of the HD and SFE extracts	50
4.1.3- Conclusion s	52
4.2- The antioxidant activities and identification of non-volatile	
compounds of E camaldulensis var. brevirostris leafs	56
4.2.1- The antioxidant activities of non volatile compounds	56
4.2.2- The identification of the main HPLC separated compound	s
extracted from the leafs by ethanolic digestion	77
4.2.2.1- Retention time comparison	77
4.2.2.2 - UV analysis	77
4.2.2.3 - GC-MS analysis of the TMS derivatives	78
4.2.3 - The quantitative analysis of gallic acid and ellagic acid	
	84
4.2.3.1 - Quantitative analysis of gallic acid	84
4.2.3.2 - Quantitative analysis of ellagic acid	85
4.2.4 - Identification of the antioxidants components (F1 and F2)	in
SFE extract (modified with 15 % ethanol	86
4.2.4.1 - Identification of the isolated compound F1	88
4.2.4.2 - Identification of the isolated compound F2	96
4.2.4.3 - The antioxidant activities of the compounds (F1	and
F2)	99
4.3 - The toxicity study of HD oil and ethanol digested extract	105

CONTENTS

	Page
5 – English summary	107
6 – German summary	119
7 - References	1118
8 - Arabic summary	123

AIM AND SCOPE OF THE WORK

1 - Aim and Scope of the Work

Lipid oxidation is a major cause of food quality deterioration. Oxidation of lipids initiates other changes in food, which affect its nutritional quality, wholesomeness and safety, colour, flavour and texture. Antioxidants are principal ingredients which protect food quality by preventing oxidative deterioration of foods.

Synthetic antioxidants such as butylated hydroxy toluene (BHT) and butylated hydroxy anisole (BHA) are commonly used in the food industry because they retard undesirable changes due to oxidation. However, their use in food has been falling off due to suspected action as promoters of carcinogenesis and a trend among consumers towards "all natural ingredients" have resulted in a pronounced activity in the field of natural additives.

Recently aromatic plants have received much attention as sources of active antioxidants. To the best of our knowledge, there are no previous reports on the antioxidants from the leaves of *Eucalyptus* species native to Egypt.

Eucalyptus camaldulensis var. brevirostris is a frequently planted tree in Egypt. Their leaves are not yet used commercially. Thus the main objective of the present study was to assess the effectiveness of the leaves of Eucalyptus. camaldulensis var. brevirostris as potential source for antioxidative compounds.

Using CO₂ as a solvent in the supercritical fluid extraction technique has drown more and more attention during the last years because of its environmental safety and convenience to be used in food industry. So it was of interest to evaluate this technique and traditional techniques in terms of their effectiveness in extracting the active antioxidant compounds.

The extracted materials are to be analysed by GC-MS, HPLC, HPLC-MS HNMR, MS, IR and UV methods in order to find a relation between their chemical constitution and antioxidant activity.

Toxicity studies have to be carried out to confirm the safe use of the extracted materials as natural antioxidant in food.

REVIEW OF LETRATURE