TSH and AMH in Infertile Women

Thesis

Submitted for Partial Fulfillmentof Master Degree in Obstetrics and Gynecology

By Haitham Hassan Ahmed

M.B., B.Ch, Ain Shams University (2008)
Resident Obstetrics and Gynecology
At Maghagha General Hospital

Supervised by Dr. Hazem Mohamed Sammour

Professor of Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Wessam Magdi Abuelghar

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Nermine Essam El-Din Abd El-Salam

Lecturer of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة البقرة الآية: ٣٢

Then, I would like to express my deepest gratitude to **Dr.Hazem Mohamed Sammour** Professor of Obstetrics and Gynecology, faculty of medicine Ain-Shams University for dedicating so much of his precious time and effort to help me complete this work.

Indeed, words do fail me when I come to express my unlimited appreciation to **Dr. Wessam Magdi Abuelghar** Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine Ain-Shams University who was always there to help me, to encourage me and very kindly offer me his valuable remarks in every step of this work.

I am deeply indebted to **Dr. Nermine Essam El-Din Abd El-Salam** Lecturer of Obstetrics and Gynecology, Faculty of Medicine Ain-Shams University for her guidance and unlimited assistance throughout this work.

I would like to express my deepest thanks to **Dr. Ahmed**Mohamed Abbas Lecturer of Obstetrics and Gynecology,

Faculty of Medicine Ain-Shams University.

I would like to thank My family especially My wife for their support.

Finally, thanks to all **My patients** who supported me and gave hand to the success of this work.

Haitham Hassan

Contents

Subjects Page	
List of Abbreviations	I
List of Tables	V
List of Figures	VI
 Protocol 	
• Introduction	1
Aim of the Work	4
Review of Literature	
- Anti-Müllerian Hormone	5
- Throid Gland	13
- Premature Ovarian Failure	29
Patients and Methods	39
• Results	53
• Discussion	70
Summary and Conclusions	79
Recommendations	82
• References	83
Master Table	109
Arabic Summary	

List of Abbreviations

ACTH : Adrenocorticotropic hormone

ACVR1 : Activin A receptor, type I

AE-PCOS: Androgen Excess and Polycystic Ovary

Society Syndrome Society

AES : Androgen Excess Society

AFC : Antral follicle count

Alk : Activin receptor-like kinase

AMH : Anti-Müllerian hormone

AMHR2 : Anti-Müllerian hormone specific type 2

receptor

ANOV : Anovulation

ART : Assisted Reproductive Techniques

ASRM: American Society for Reproductive

Medicine

AUC : Area under the curve

β : Regression coefficient

BMI : Body mass index

BMPR: Bone morphogenetic protein receptor

BMPs: Bone morphogenetic proteins

CAH : Congenital adrenal hyperplasia

CI : Confidence Interval

CL : Corpus luteum

E List of Abbreviations &

CNS : Central nervous system

DF : Degree of freedom

DHEA-S: Dehydroepiandrosterone sulfate

DHT : Di-hydro-testosterone

DIT : Diiodotyrsine

DNA : Deoxyribonucleic acid

 \mathbf{E}_1 : Estrone

E₂ : Estradiol

ELISA : Enzyme-linked immunosorbent assay

ESHRE: European Society of Human

Reproduction and Embryology

FSH : Follicle-stimulating hormone

GH : Growth hormone

GnRH : Gonadotropin-releasing hormone

GnRH-A: Gonadotrophin - releasing hormone

analogue

HCG: Human chorionic gonadotropin

HMG : Human menopausal gonadotropin

HRP: Horseradish peroxidase

IBM: International Business Machines

Corporation

ICSI : Intra-cytoplasmic sperm injection

IGF-1 : Insulin-like growth factor-1

🕏 List of Abbreviations 🗷

IGFBP-1: Insulin - like growth factor-binding

protein-1

IgG: Immunoglobulin G

IR : Insulin resistance

IV : Intravenous

IVF : In Vitro Fertilization

IVM : In Vitro Maturation

J : Youden index

LH : Luteinizing hormone

MHPG : 3-Methoxy-4-hydroxyphenylglycol

MIS : Müllerian-inhibiting substance

MS : Metabolic syndrome

MIT : Monoiodotyrosine

NIH : National Institutes of Health

OHSS : Ovarian **hyperstimulation** syndrome

OR : Odds ratio

PCO: Polycystic ovaries

PCOD : Polycystic ovary disease

PCOM : Polycystic ovary morphology

PCOS : Polycystic ovary syndrome

P-value: Probability value

RI : Resistance index

ROC : Receiver operating characteristic

🕏 List of Abbreviations 🗷

R-Smads: Receptor - regulated small mothers

against decapentaplegic proteins

SC : Subcutaneous

SD : Standard deviation

SE : Standard error

SHBG : Sex hormone-binding globulin

SMADs : Small mothers against decapentaplegic

proteins

SPSS: Statistical Package for the Social

Sciences

T3 : Triiodothyronine

T4 : Thyroxine

TAI: Thyroid autoantibodies

TBG: Thyroxine Binding globulin

TBOAb: Thyroid peroxidase antibodies

TBPA: Thyroxine binding prealbumin

Tg : Thyroglobulin

TgAb : Thyroglobulin antibodies

TGF-β : Transforming growth factor-beta

TMB: Tetramethylbenzidine

TRH : Thyrotropin-releasing hormone

TRβ2 : Thyroid hormone receptor β2

TSH: Thyroid-stimulating hormone

TTR : Transthyretin

List of Tables

Table No.	Title	Page No.
Table (1)	Ranges of AMH	7
Table (2)	Causes of hyperthyroidism	19
Table (3)	Clinical features of hyperthyroidism	20
Table (4)	Grades of hypothyroidism	24
Table (5)	Typical calibration curve	49
Table (6)	Demographic of cases and controls	54
Table (7)	Results of hormonal assay in cases and	55
	controls	
Table (8)	Baseline characteristics of women with	56
	normal fertility and infertility.	
Table (9)	Receiver-operating characteristic	59
	(ROC) curve analysis for	
	discrimination between cases and	
	controls using the AMH, TSH, or FT3	
	level	
Table (10)	Comparison of the receiver-operating	64
	characteristic (ROC) curves for	
	discrimination between cases and	
	controls using the AMH, TSH, or FT3	
	level	
Table (11)	Correlation among AMH, FT3, TSH,	66
	age, and BMI in the whole study	
	population, cases, or controls.	

List of Figures

Figure No.	Title	Page No.
Figure (1)	Model of AMH action in the ovary	9
Figure (2)	Synthesis and metabolism of the thyroid hormones	15
Figure (3)	Flowchart of study procedures.	53
Figure (4)	Mean AMH level in cases and controls	57
Figure (5)	Mean TSH level in cases and controls	57
Figure (6)	Mean FT3 level in cases and controls	58
Figure (7)	Receiver-operating characteristic (ROC) curve for discrimination between cases and controls using the AMH level	61
Figure (8)	Receiver-operating characteristic (ROC) curve for discrimination between cases and controls using the TSH level	62
Figure (9)	Receiver-operating characteristic (ROC) curve for discrimination between cases and controls using the FT3 level	63
Figure (10)	Comparison of the receiver-operating characteristic (ROC) curves for discrimination between cases and controls using the AMH, TSH, or FT3 level	65

🕏 List of Figure 🗷

Figure No.	Title	Page No.
Figure (11)	Scatter plot showing the correlation	67
	between AMH and TSH	
Figure (12)	Scatter plot showing the correlation	67
	between AMH and FT3	
Figure (13)	Scatter plot showing the correlation	68
	between AMH and age	
Figure (14)	Scatter plot showing the correlation	68
	between AMH and BMI	
Figure (15)	Scatter plot showing the correlation	69
	between TSH and FT3	

TSH and AMH in Infertile Women

Protocol of Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By Haitham Hassan Ahmed

M.B., B.Ch, Ain Shams University (2008)
Resident Obstetrics and Gynecology
At Maghagha General Hospital

Supervised by Dr. Hazem Mohamed Sammour

Professor of Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Wessam Magdi Abuelghar

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Nermine Essam El-Din Abd El-Salam

Lecturer of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
2016

Introduction

Infertility is defined as the inability of a couple to achieve pregnancy over an average period of one year (in women under 35 years of age) or 6 months (in women above 35 years of age) of unprotected sexual intercourse. Infertility can be due to female, male reasons or both. It can be either primary or secondary (*Cooper et al.*, 2010).

Thyroid dysfunction and autoimmune thyroiditis are known adverse risk factors for pregnancy as well as fertility, regardless of the presence of disease in women of reproductive age (*Krassas et al., 2010*). In particular, hypothyroid women are at an increased risk of menstrual disorders and infertility because of altered peripheral estrogen metabolism, hyperprolactinaemia and abnormal release of gonadotropin-releasing hormone (*Krassas et al., 2010*).

The prevalence of subclinical hypothyroidism characterized by aberrant high serum thyroid-stimulating hormone (TSH) levels with normal free thyroxin (FT4) levels in infertile women are reported to be approximately 20% and it is a primary cause of subfertility(*De Groot et al.*, 2012).

Indeed, average TSH levels in infertile women were reportedly higher than those in normal fertile women. And elevated serum TSH levels were associated with diminished ovarian reserve in infertile patients (*Michalakis et al.*, 2011). Moreover, although levothyroxine replacement therapy for subclinical hypothyroidism in infertile patients remains debatable, thyroxin supplementation may improve fertility to successful pregnancy(*Velkeniers et al.*, 2013).

This data suggests that hypothyroidism is strongly correlated with infertility (*Velkeniers et al.*, 2013).

On the other hand, female fecundity decreases with increasing age, primarily because of decreased ovarian function. Anti-mullerian hormone (AMH) is a dimeric glycoprotein belonging to the transforming growth factor-beta (TGF-B) super family, which act on tissue growth and differentiation. It is produced by the granulosa cells from pre-antral and small antral follicles. Ovarian research after oophorectomy showed that serum AMH levels were closely correlated with the number of primordial follicles; therefore, AMH is a suitable biomarker of ovarian age in women of reproductive age (*Hansen et al.*, 2011).

Expectedly, ovarian function may be affected by impaired thyroid function, however this association has not been studied enough.

Aim of the Work

Research hypotheses:

In infertile women of reproductive age, serum TSH levels maybe elevated and serum AMH levels maybe decreased.

Research question:

In infertile women, is there any association between serum TSH levels and serum AMH levels?

Aim of the work:

The aim of this study is to evaluate the association between thyroid function and serum AMH levels.