

Structures, Spectral, Thermal and Radiochemical Studies of Some Transition Metal Complexes of Biologically Active Nucleic Acid Constituents

A Thesis Submitted By Ahmed Salah Eldin Abd El-Salam El-Kholany

B.Sc. Chemistry- Faculty of Science – Alexandria University (1994) M.Sc. Chemistry- Faculty of Science- Alexandria University (2008)

To

Chemistry Department

Faculty of Science

Ain Shams University

For Doctor Degree in

The Philosophy of Science

(Chemistry)

Cairo 2015

Structures, Spectral, Thermal and Radiochemical Studies of Some Transition Metal Complexes of Biologically Active Nucleic Acid Constituents

Thesis Presented By Ahmed Salah Eldin Abd El-Salam El-Kholany

B.Sc. Chemistry- Faculty of Science – Alexandria University (1994) M.Sc. Chemistry- Faculty of Science- Alexandria University (2008)

For Doctor Degree in

The Philosophy of Science

(Chemistry)

Under Supervision of

Prof. Dr. Mohamed Fathy El-Shahat Prof. Dr. Mamdouh Saad Masoud

Prof. of Inogranic Chemistry

Prof. of Inogranic Chemistry

Chemistry Department Chemistry Department

Faculty of Science Faculty of Science

Ain Shams University Alexandria University

Dr. Atia Elsayed Atia

Assis.Prof. of Inogranic Chemistry

Chemistry Department

Faculty of Science

Ain Shams University

Structures, Spectral, Thermal and Radiochemical Studies of Some Transition Metal Complexes of Biologically Active Nucleic Acid Constituents

A Thesis Submitted By Ahmed Salah Eldin Abd El-Salam El-Kholany

B.Sc. Chemistry- Faculty of Science – Alexandria University (1994) M.Sc. Chemistry- Faculty of Science- Alexandria University (2008)

Thesis advisors:

Signature

Prof.Dr. Mohamed Fathy El-Shahat

Prof. of Inogranic Chemistry

Chemistry Department

Faculty of Science

Ain Shams University

EC-Shahat

Prof. Dr. Mamdouh Saad Masoud

Prof. of Inogranic Chemistry

Chemistry Department

Faculty of Science

Alexandria University

Dr. Atia Elsayed Atia

Assis.Prof. of Inogranic Chemistry

Chemistry Department

Faculty of Science

Ain Shams University

M.S. Masoud

Head of the chemistry department

Prof. Dr. Hamed Ahmed Derbala

Acknowledgment

My profound gratitude and appreciation to Prof. Dr. Mamdouh Saad Masoud. Professor of Inogranic Chemistry, Faculty of Science, Alexandria University and Prof. Dr. Mohamed Fathy El-Shahat Professor of Inogranic Chemistry, Faculty of Science, Ain Shams University for suggesting and planning the present research problem. I am deeply appreciated them for their unlimited encouraging, moral supports, constructive comments and fruitiful discussions. I am also thankful to Dr. Atia Elsayed Atia. Assis. Prof. of Inogranic Chemistry, Faculty of Science, Ain Shams University.

I am also thankful to all staff members and my colleagues at the International Medical Center for their help.

Cast, but not least, my gratitude and unlimited loving thanks are due to my mother, wife, brother and my kids for their encouragement, support and patience.

LIST OF CONTENTS

LIST OF APREVIATIONSI
LIST OF PUPLICATIONIV
LIST OF FIGURESV
LIST OF TABLESX
ABSTRACTXIII
AIM OF THE WORKXIIII
1. INTRODUCTION
 thiobarbituric acid
 IR spectroscopy of the complexes

•	Thermal analysis
•	TGA
•	DTA studies
	DSC studies
	Thermodynamic and Kinetic Studies
	References
4.	The Reaction of D-glucose, 5,5' Diethyl Barbituric, Thiobarbituric Acid and Adenine with Mn(II),Mo(VI) and Cr(III) Complexes with ¹⁸ F in Different Media
	Positron emission tomography Radiopharmaceutical
	Preparation of ¹⁸ F
•	The reaction of ¹⁸ F with some of the prepared complexes
•	The effect of acidic and basic media on the reaction of ¹⁸ F with the
	prepared complexes
•	References
5.	Comparison between different techniques in purification of ¹⁸ O enriched
	water after cyclotron irradiation197
•	Treatment of inorganic ions
•	Treatment of organic residues
•	References
6.	SUMMARY211
7.	ARABIC SUMMARY

LIST OF ABBREVIATIONS

ATU: 6-Amino-2- Thiouracil.

AUH : Aminouracil.

Bzpyhy : Benzoic Pyridine-hydrazone.

C : Cytosine.

CPCU : Chemistry Process Control Unit.

CT : Charge-Transfer.

DDP : Dichlorodiammineplatinum.

DHU : Dehydrouracil dehydrogenase.

DMA : Dynamic Mechanical Analysis.

DMF : Dimethyl Formamide.

DMSO : Dimethyl Sulfoxide.

DNA : Deoxyribonucleic Acids.

DSC : Differential Scanning Calorimetry.

DsDNA : double-stranded Deoxyribonucleic Acids.

DTA : Differential Thermal Analysis.

DTG : Derivative Thermogravimetry.

EC : Electron Capture.

Et : Ethyl.

EtOH : Ethyl alcohol.

FDG : ¹⁸Fluorine-2-Fluoro-2-Deoxy-glucose.

G : Guanine.

GC : Gas Chromatography.

 H_2L_1 : D-glucose.

H₂L₂ : Thiobarbituric acid.

 H_2L_4 : 5,5' Diethyl barbituric acid.

HEU : Highly Enriched Uranium targetes.

His : Amino Acid Histidine.

HLPC : High-Performance Liquid Chromatography.

HNMR : Proton- Nuclear Magnetic Resonance Spectroscopy.

IC : Ion chromatography.

ICP-MS : Inductively Coupled Plasma Mass Spectrometry.

ICTA : The International Confederation of Thermal Analysis.

Im : Imidazole.

IR : Infra Red Spectroscopy.

 K_{222} : Kryptofix.

LEU : Low Enriched Uranium targetes.

MCA : Multi Channel Analyzer.

MCC : Multiple Correlation Coefficient.

MeCN : Acetonitrile.

MeOH : Methyl Alcohol.

NMR : Nuclear Magnetic Resonance Spectroscopy.

OPRTase : Orotate Phosphoribosyltransferase.

PET : Positron Emission Tomography.

Pyhy : Pyridine-hydrazone.

QMA : Quaternary Ammonium Anion Exchange.

R_f : Retardation Factor.

RNA : Ribonucleic Acids.

SCE : Saturated Calomel Electrode.

SPSS : A Program of Statistical Package of Social Sciences.

SsDNA : Single-stranded Deoxyribonucleic Acids.

T : Thymine.

Tc : Crystallization temperature.

Tg : Glass transition temperature.

TG : Thermogravimetry.

TLC : Thin Layer Chromatography.

Tm : Transition melting midpoint temperature.

TMA : Thermomechanical Analysis.

TU : Thiouracil.

UV : Ultera Violet Spectroscopy.

LIST OF PUBLICATION

- 1. Masoud M. S., El-Shahat M. F. and **El-Kholany A. S.**, Physicochemical studies of the reaction of ^{99m}Tc with 5, 5′-diethyl barbituric acid, adenine, d-glucose and thiobarbituric acid at different temperatures, J. Spectrochimica Acta Part A, : 127, 216–224(2014).
- 2. Masoud M. S., **El-Kholany A. S**. and El-Shahat M. F. ,Spectral and Thermal Studies of Mo and Mn d-glucose Complexes, 7th International Conference on Chemical & Environmental Engineering, Military Technical College Kobry El-Kobbah, Cairo, Egypt, 1-21 (27-29 May, 2014), J. Inorganica Chimica Acta (under review)
- 3. Masoud M. S., **El-Kholany A. S**. and El-Shahat M. F., Spectral, Thermal Studies of Thiobarbituric Acid and Adenine with Mn(II), Mo(VI) and Cr(III) Complexes and Studying the Reaction of Some of the Prepared Complexes with ¹⁸F, J. Radiachimica Acta (submitted for publication).

LIST OF FIGURES

Figure Page
(1.1) ORTEP presentations of [TcCl (bzpyhy) (CO) ₃] along two different axes
(1.2) Structure of pyhy and bzpyhy, synthesis of [99mTcX(pyhy) (CO) ₃], synthesis of [^{99m} TcX(bzpyhy) (CO) ₃] and subsequent at mild conditions
(1.3) DNA structure and bases
(2.1) Decay scheme of ⁹⁹ Mo
(2.2) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of ^{99m} TcO ₄ and 5-5 diethyl barbituric acid at 25°C72
(2.3) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of ^{99m} TcO ₄ and 5-5 diethyl barbituric acid at 40°C73
(2.4) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of ^{99m} TcO ₄ and 5-5 diethyl barbituric acid at 60°C
(2.5) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of \$^{99m}TcO_4\$ and adenine at 25°
(2.6) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of $^{99m}TcO_4$ and adenine at $40^{\circ}C$
(2.7) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of \$^{99m}TcO_4\$ and adenine at 60°C
(2.8) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of \$^{99m}TcO_4\$ and d-glucose at 25°C
(2.9) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of \$^{99m}TcO_4\$^-d-glucose at 40°C
(2.10) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of $^{99m}TcO_4$ and d-glucose at $60^{\circ}C$
(2.11) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of \$^{99m}TcO_4\$ and thio barbituric acid at 25°C
(2.12) TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of ^{99m} TcO ₄ and thio barbituric acid at 40°C82
(2.13)TLC radio detector diagram for samples after one to ten hours from the mixture of the reaction of \$^{99m}TcO_4\$ and thio barbituric acid at 60°C
(2.14) TLC radio detector diagram for plank solvents with ^{99m} TcO ₄

^{99m} TcO ₄ and 5-5 diethyl BA after heating in different solvents at room temperature 85	5
(2.16) TLC radio detector diagram for samples from the mixture of the reaction of ^{99m} TcO ₄ - and adenine after heating in different solvents at room temperature	5
(2.17) TLC radio detector diagram for samples from the mixture of the reaction of ^{99m} TcO ₄ and d-glucose in after heating different solvents at room temperature	7
(2.18) TLC radio detector diagram for samples from the mixture of the reaction of 99mTcO ₄ and thio barbituric acid after heating in different solvents at room temperature	3
(2.19) Solvent effect on the electronic spectra of the reaction of ^{99m} Tc with 5, 5′-diethyl BA)
(2.20) Solvent effect on the electronic spectra of the reaction of ^{99m} Tc with adenine)
(2.21) Solvent effect on the electronic spectra of the reaction of ^{99m} Tc with glucose	l
(2.22) Solvent effect on the electronic spectra of the reaction of ^{99m} Tc with thio barbituric acid	2
(3.1) Comparison of curves obtained on heating by:	
(a) DTA, (b) power-compensating DSC and (c) heat-flux DSC	4
(3.2) The heat flow temperatures (Tm, Tg, Tc) relationship	5
(3.3) IR spectra cm ⁻¹ for: a) d-glucose, b) MoO ₂ (HL) ₂ ,	
c) Mn $_3(L)_2$ (OH)(H $_2$ O) $_6$ Cl	3
(3.4):IR spectra cm ⁻¹ for: a) thiobarbituric acid, b) Mo ₂ (L ₂) ₅ (HL ₂) ₂ ,	
c) Mn (H ₂ L ₂) ₃ Cl ₂ , d) Cr (H L ₂)(L ₂) (H ₂ O) ₃	5
(3.5)IR spectra cm-1 for:	
a) adenine, b) Mo ₂ (L ₃) ₅ (OH) ₂ (H ₂ O) ₃ , c) Cr ₂ (HL ₃) ₂ (H ₂ L) (SO ₄) ₂ (H ₂ O) ₇	8
(3.6) IR spectra cm-1 for: a) 5,5' diethyl barbituric acid,	
b) Cr (HL ₄) ₂ ((H ₂ O)(OH)	0
(3.7) Electronic spectra in nm for the prepared complexes	3
(3.8) Thermal analysis data DTA, TGA and DSC of MoO ₂ (HL) ₂	
(3.10) Thermal analysis data DTA, TGA and DSC of Mo ₂ [(L ₂) ₅ (HL ₂) ₂	8

(3.11) Thermal analysis data DTA, TGA and DSC of Mn (H ₂ L ₂) ₃ Cl ₂	129
(3.12): Thermal analysis data DTA, TGA and DSC of Cr (H L ₂)(L ₂) (H ₂ O) ₃	130
(3.13): Thermal analysis data DTA, TGA, Dr. TGA and DSC of Mo_2 (L_3) $_5$ (OH) $_2$ (H_2 O) $_3$	131
(3.14): Thermal analysis data DTA, TGA and DSC of Cr ₂ (HL ₃) ₂ (H ₂ L ₃) (SO ₄) ₂ (H ₂ O) ₇	132
(3.15): Thermal analysis data DTA, TGA and DSC of Cr (HL ₄) ₂ ((H ₂ O)(OH)	133
(3.16): $In\Delta T-10^3/T$ relationship for MoO_2 (HL) ₂ complex	143
(3.17): $\ln\Delta T$ -10 ³ /T relationship for Mn ₃ (L) ₂ (OH)(H ₂ O) ₆ Cl complex	143
(3.18): $In\Delta T-10^3/T$ relationship for $Mo_2(L_2)_5(HL_2)_2$ complex	144
(3.19): $\ln\Delta T$ -10 ³ /T relationship for Mn (H_2L_2) ₃ Cl ₂ complex	144
(3.20): $\ln\Delta T - 10^3/T$ relationship for Cr (H L ₂)(L ₂) (H ₂ O) ₃ complex	144
(3.21): $\ln\Delta T$ -103/T relationship for Mo ₂ (L ₃) ₅ (OH) ₂ (H ₂ O) ₃ , complex	145
(3.22) $\ln\Delta T$ -103/T relationship for Cr_2 (HL_3) $_2$ (H_2L_3) (SO_4) $_2$ (H_2O) $_7$ complex	145
(3.23) $\ln\Delta T$ -103/T relationship for Cr (HL ₄) ₂ ((H ₂ O)(OH) complex	145
(3.24) DSC curves of MoO ₂ (HL) ₂ complex dependence of specific heat and temperature	149
(3.25) DSC curves of Mn ₃ (L) ₂ (OH)(H ₂ O) ₆ Cl complex dependence of specific heat and temperature	150
(3.26) DSC curves of Mo ₂ (L ₂) ₅ (HL ₂) ₂ complex dependence of specific heat and temperature	151
(3.27) DSC curves of Mn (H ₂ L ₂) ₃ Cl ₂ complex dependence of specific heat and temperature	152
(3.28) DSC curves of Cr (H L ₂) (L ₂) (H ₂ O) ₃ dependence of specific heat and temperature	153
(3.29) DSC curves of Mo ₂ (L ₃) ₅ (OH) ₂ (H ₂ O) ₃ dependence of specific heat temperature	154
(3.30) DSC curves of Cr ₂ (HL ₃) ₂ (H ₂ L ₃) (SO ₄) ₂ (H ₂ O) ₇ dependence of specific heat and temperature	155
(3.31) DSC curves of Cr (HL ₄) ₂ ((H ₂ O)(OH) dependence of specific heat and temperature	156
(3.32) Coats-Redfern plots of degradation steps of MoO ₂ (HL) ₂ complex:	
(a) 1 st degradation step (b) 2 nd degridation step	;
(3.33) Coats-Redfern plots of degradation steps of Mn ₃ (L) ₂ (OH)(H ₂ O) ₆ Cl complex:	
(a) 1st degradation step (b) 2nd degradation step (c) 3 rd degradation step	165

(3.34) Coats-Redfern plots of degradation steps of $Mo_2(L_2)_5(HL_2)_2$ complex:	
(a) 1 st degradation step (b) 2 nd degradation step	166
(3.35) Coats-Redfern plots of degradation steps of Mn (H ₂ L ₂) ₃ Cl ₂ complex:	
(a) 1 st degradation step (b) 2 nd degradation step	166
(3.36) Coats-Redfern plots of degradation steps of Cr (H L ₂)(L ₂) (H ₂ O) ₃ complex:	
(a) 1 st degradation step (b) 2 nd degradation step	167
(3.37) Coats-Redfern plots of degradation steps of Mo ₂ (L ₃) ₅ (OH) ₂ (H ₂ O) ₃ complex:	
(a) 1 st degradation step (b) 2 nd degradation step (c) 3 rd degradation step	167
(3.38) Coats-Redfern plots of degradation steps of Cr ₂ (HL ₃) ₂ (H ₂ L ₃) (SO ₄) ₂ (H ₂ O) ₇ complex:	
(a) 1 st degradation step (b) 2 nd degradation step	168
(3.39) Coats-Redfern plots of degradation steps of Cr (HL ₄) ₂ ((H ₂ O)(OH) complex:	
(a) 1 st degradation step (b) 2 nd degradation step (c) 3 rd degradation step	168
(3.40) Horowitz-Metzger plots of degradation steps of MoO ₂ (HL) ₂ complex:	
(a) 1 st degradation step (b) 2 nd degradation step	170
(3.41)Horowitz-Metzger plots of degradation steps of Mn ₃ (L) ₂ (OH)(H ₂ O) ₆ Cl complex:	
(a) 1 st degradation step (b) 2 nd degradation step (c) 3 rd degradation step	170
(3.42) Horowitz-Metzger plots of degradation steps of Mo ₂ (L ₂) ₅ (HL ₂) ₂ complex:	
(a) 1 st degradation step (b) 2 nd degradation step	171
(3.43) Horowitz-Metzger plots of degradation steps of Mn (H ₂ L ₂) ₃ Cl ₂ complex:	
(a) 1 st degradation step (b) 2 nd degradation step	171
(3.44) Horowitz-Metzger plots of degradation steps of Cr (H L ₂)(L ₂) (H ₂ O) ₃ complex:	
(a) 1 st degradation step (b) 2 nd degradation step	171
(3.45) Horowitz-Metzger plots of degradation steps of Mo ₂ (L ₃) ₅ (OH) ₂ (H ₂ O) ₃ :	
(a) 1 st degradation step (b) 2 nd degradation step (c) 3 rd degradation step	172
(3.46) Horowitz-Metzger plots of degradation steps of Cr ₂ (HL ₃) ₂ (H ₂ L ₃) (SO ₄) ₂ (H ₂ O) complex:	
(a) 1 st degradation step (b) 2 nd degradation step	172
(3.47) Horowitz-Metzger plots of degradation steps of Cr (HL ₄) ₂ (H ₂ O)(OH) complex:	
(a) 1 st degradation step (b) 2 nd degradation step (c) 3rd degradation step	173

(4.1)	Decay of positron emitting radionuclide	181
(4.2)	a) Retention of 18F in light QMA ion exchange column b) Elution of ¹⁸ F in light QMA ion exchange column	185
(4.3)	kryptofix 222 [™] and K ⁺	186
(4.4)	TLC radio detector diagram for samples of the reaction of ¹⁸ F with Mn (H ₂ L ₂) ₃ Cl ₂ complex neutral, acidic and basic media	190
(4.5)	TLC radio detector diagram for samples of the reaction of $^{18}F^-$ with Mo ₂ (L ₃) ₅ (OH) ₂ (H ₂ O) ₃ complex neutral, acidic and basic media	191
(4.6)	TLC radio detector diagram for samples of the reaction of ¹⁸ F with Cr (HL ₄) ₂ (H ₂ O)(OH) complex neutral, acidic and basic media	192
(4.7)	TLC radio detector diagram for samples of the reaction of $^{18}F^-$ with $Cr_2(HL_3)_2(H_2L_3)$ (SO ₄) $_2(H_2O)_7$ complex neutral, acidic and basic media	193
(4.8)	TLC radio detector diagram for samples of the reaction of ¹⁸ F ⁻ with MoO ₂ (HL) ₂ complex neutral, acidic and basic media	194
(4.9)	TLC radio detector diagram for samples of the reaction of ¹⁸ F ⁻ with Cr (H L ₂)(L ₂) (H ₂ O) ₃ complex neutral, acidic and basic media	195
(4.10) Recorded gamma spectrum of prepared ¹⁸ F	196
(5.1)	Structure of AG 11 A8 resin in the self absorbed form	200
(5.2)	Recorded gamma spectrum of waste ¹⁸ O-water	204
(5.3)	Recorded gamma spectrum of water after passing through the resin column	205
(5.4)	Recorded gamma spectrum of distillated ¹⁸ O-water	206
(5.5)	GC spectrum of a) west ¹⁸ O-water, b) water after 12 houre of UV irradiation, c) water after 1hour of ozonolysis and d) water after both UV irradiation and ozonolysis	209