Ultrasound biomicroscopy Applications in Glaucoma

An Essay

Submitted for partial fulfillment of

Master Degree in Ophthalmology

Ву

Nesreen Abo Elyazeed Hammad

M.B, B.Ch

Faculty of Medicine, TantaUniversity

Supervised by

Prof. Dr. Mohamed Adel Abdelshafik

Professor of Ophthalmology

Faculty of Medicine

AinShamsUniversity

Prof. Dr. AymanAbdelmoneimGaafar

Professor of Ophthalmology

Faculty of Medicine

Ain Shams University

Cairo

Egypt

2012

تطبيقات الموجات فوق الصوتية الميكروسكوبية الحيوية

المياه الزرقاء

توطئة للحصول علي درجة الماجيستير في طب و جراحة العيون

الطبيبة/ نسرين أبو اليزيد حماد

بكالوريوس الطب و الجراحة كاية الطب.

/ عادل عبد الشفيق

أستاذ طب وجراحة العيون كلية الطب – جامعة عين شمس

/ أيمن

أستاذ طب و جراحة العيون كلية الطب – جامعة عين شمس

جامعة عين شمس

القاهرة

Summary

Ultrasound biomicroscopy is a new imaging technique that uses high frequency ultrasound to produce images of the eye at near microscopic resolution.

Fifty mega hertz is an ideal compromise between depth and resolution to visualize the entire anterior segment.

There are three main components of the ultrasound biomicroscopy machine transducer, high-frequency signal processing and precise motion control.

In ultrasound biomicroscopy the probe may be used in the supine or the sitting position and the eye is open.

Ultrasound biomicroscopy systems are suitable for imaging of virtually all anterior segment anatomy and pathology, including the cornea, iridocorneal angle, anterior chamber, iris, ciliary body and lens.

Ultrasound biomicroscopy provides objective, high resolution, cross-sectional information on the anterior segment anatomy and is sometimes useful for understanding the mechanism of glaucoma.

Several types of glaucoma are caused by structural abnormalities of the anterior segment of the globe. This is particularly true of angle closure glaucoma and infantile glaucoma. The ability of ultrasound biomicroscopy to image the anterior chamber structures in depth at high resolution makes it a useful tool in glaucoma research and clinical practice.

Ultrasound biomicroscopy is useful in analyzing angle closure glaucoma and the mechanisms that produce it. Other ocular structures

Acknowledgment

First & foremost thanks are for Allah to whom I relate any success in achieving any work in my life.

I would like to express my deeply felt gratitude to professor. Dr/ Mohammed Adel Abdelshafik for giving me the chance of working under his supervision. I appreciated his constant encouragement.

My profound gratitude is to professor. Dr/ AymanAbdelmoneimGaafar who set up the proper environment for that work and who supported me throughout this work.

To my husband and my daughters for their patience, encouragement & support.

Contents

Contents	Page
- List of abbreviations	I
- List of figures	Ш
- Introduction	VII
- Aim of work	IX
1. The physics of ultrasound	1
2. Instrument	5
3. Technique	8
4. UBM anatomy of the normal eye and adnexa	11
5. UBM in Angle closure [ACG]	18
6. UBM in Open angle glaucoma	53
7. UBM in glaucoma surgery	59
8. UBM in pediatric glaucoma	77
- Summary	84
- References	89
- Arabic summary	114

List of abbreviations

ACD Anterior chamber depth ACG Angle closure glaucoma AOD Angle opening distance ARA Angle recess area AS-OCT Anterior segment optical coherence tomography C The speed of sound CB Ciliary body CD Choroidal detachment Cm Centimeter Co Cornea Cp Ciliary process CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma PACS Primary angle closure PACC Primary angle closure PACC Primary angle closure PACS Primary angle closure PACC Primary angle closure PACS Primary angle closure PACC Primary angle closure PACC Primary angle closure PACC Primary angle closure suspect PES Pseudo-exfoliation syndrome	AC	Anterior chamber
AOD Angle opening distance ARA Angle recess area AS-OCT Anterior segment optical coherence tomography C The speed of sound CB Ciliary body CD Choroidal detachment Cm Centimeter Co Cornea Cp Ciliary process CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure glaucoma	ACD	Anterior chamber depth
ARA Angle recess area AS-OCT Anterior segment optical coherence tomography C The speed of sound CB Ciliary body CD Choroidal detachment Cm Centimeter Co Cornea Cp Ciliary process CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure suspect	ACG	Angle closure glaucoma
AS-OCT Anterior segment optical coherence tomography C The speed of sound CB Ciliary body CD Choroidal detachment Cm Centimeter Co Cornea Cp Ciliary process CRS Cogan-Reese syndrome CS Chandler's syndrome decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure suspect	AOD	
C The speed of sound CB Ciliary body CD Choroidal detachment Cm Centimeter Co Cornea Cp Ciliary process CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris IPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHZ Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure suspect	ARA	Angle recess area
C The speed of sound CB Ciliary body CD Choroidal detachment Cm Centimeter Co Cornea Cp Ciliary process CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHZ Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure suspect	AS-OCT	Anterior segment optical coherence tomography
CB Ciliary body CD Choroidal detachment Cm Centimeter Co Cornea Cp Ciliary process CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	С	
Cm Centimeter Co Cornea Cp Ciliary process CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	СВ	
Co Cornea Cp Ciliary process CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure suspect	CD	Choroidal detachment
CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure suspect	Cm	Centimeter
CRS Cogan-Reese syndrome CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	Co	Cornea
CS Chandler's syndrome dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure suspect	Ср	Ciliary process
dB decibel DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure suspect	CRS	Cogan-Reese syndrome
DS Deep sclerectomy DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	CS	Chandler's syndrome
DSCI Deep sclerectomy with collagen implant Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	dB	decibel
Er: YAG Erdium yttrium aluminum garnet Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	DS	Deep sclerectomy
Hz Hertz ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	DSCI	Deep sclerectomy with collagen implant
ICE Iridocorneal endothelial syndrome IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACS Primary angle closure suspect	Er: YAG	Erdium yttrium aluminum garnet
IOP Intraocular Pressure Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	Hz	Hertz
Ir Iris JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	ICE	Iridocorneal endothelial syndrome
JPOAG Juvenile primary open angle glaucoma KHz Kilo Hertz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	IOP	Intraocular Pressure
 KHz LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging μ μ millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACS Primary angle closure suspect 	Ir	Iris
LPI Laser peripheral iridotomy MHz Mega Hertz MRI Magnetic resonance imaging µ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	JPOAG	Juvenile primary open angle glaucoma
MHz Mega Hertz MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	KHz	Kilo Hertz
MRI Magnetic resonance imaging μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	LPI	Laser peripheral iridotomy
 μ Microns mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect 	MHz	Mega Hertz
mm millimeters Nd: YAG Neodymium: YAG NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	MRI	Magnetic resonance imaging
Nd: YAGNeodymium: YAGNPTNonpenetrating trabeculectomyOAGOpen angle glaucomaOCTOptical coherence tomographyPACPrimary angle closurePACGPrimary angle closure glaucomaPACSPrimary angle closure suspect	μ	Microns
NPT Nonpenetrating trabeculectomy OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	mm	millimeters
OAG Open angle glaucoma OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	Nd: YAG	Neodymium: YAG
OCT Optical coherence tomography PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	NPT	Nonpenetrating trabeculectomy
PAC Primary angle closure PACG Primary angle closure glaucoma PACS Primary angle closure suspect	OAG	Open angle glaucoma
PACG Primary angle closure glaucoma PACS Primary angle closure suspect	OCT	Optical coherence tomography
PACS Primary angle closure suspect	PAC	Primary angle closure
7 6 1	PACG	Primary angle closure glaucoma
PES Pseudo-exfoliation syndrome	PACS	
	PES	Pseudo-exfoliation syndrome

PI	Plateau iris
PIA	Progressive iris atrophy
PIC	Plateau iris configuration
PIS	Plateau Iris Syndrome
POAG	Primary open angle glaucoma
PPI	Pseudo plateau iris syndrome
PVDF	Polyvinylidene Difluoride
PVDF-TrFE	Polyvinylidene fluoride Trifluoroethylene
RHAI	Reticulated hyaluronic acid implant
RPB	Relative pupillary block
Sc	Sclera
SCF	Suprachoroidal fluid
S-WS	Sturge Weber syndrome
TCPD	Trabecular ciliary processes distance
TDM	Trabeculo- Descemet's membrane
TIA	Trabecular iris angle
TM	Trabecular meshwork
TMAL	Trabecular meshwork height – axial length ratio
TMIA	Trabecular meshwork iris angle
UBM	Ultrasound biomicroscopy
YAG	Yttrium Aluminum Garnet
U	Frequency
٦	Wavelength
2D	Two dimensional
3D	Three dimensional

List of figures

Number	Figure	Page
Fig. 1	Eye cups used for ultrasound.	8
Fig. 2	Eye cup fitted in between the eyelids.	8
Fig. 3	Bag balloon technology.	10
Fig. 4	UBM image of normal anterior segment.	11
Fig. 5	UBM of the anterior segment of a normal eye.	12
Fig. 6	UBM of normal cornea.	12
Fig. 7	UBM of sclera.	13
Fig. 8	UBM image at the limbus.	14
Fig. 9	Schematic representation of UBM anterior chamber	15
	angle measurement.	
Fig. 10	Schematic radial ultrasound biomicroscopy scan	15
	showing TM-iris angle $(\theta 1)$ and angle opening	
	distance (AOD).	
Fig. 11	UBM image at the ciliary body.	15
Fig. 12	Axial view of the ciliary processes.	16
Fig. 13	UBM image of zonules.	16
Fig. 14	(A) Schematic lines for measurements on the UBM	17
	scan. (B) UBM scan of the normal eye.	
Fig. 15	UBM scan of PACG.	18
Fig. 16	UBM scan following laser peripheral iridotomy.	18
Fig. 17	Left: the iris in pupillary block on UBM. Right: In	20
	laser iridotomy.	
Fig. 18	UBM image of relative pupillary block.	21
Fig. 19	Pupillary block angle-closure.	21
Fig. 20	New eye cup of indentation. (A) Photo of the new eye	22
	cup. (B) Design of the new eye cup	
Fig. 21	UBM images of an eye with relative pupillary block.	23
Fig. 22	Two different eye cups.	24
Fig. 23	Schematic explanation of corneal indentation. a:	25
	With the large eye cup. b: With the small eye cup.	
Fig. 24	Indentation effect of two eye cups.	25
Fig. 25	Altered anterior chamber angle configuration by the	26
	indentation UBM.	
Fig. 26	Left: the miotic response to light in angle closure	27
	glaucoma. Right: Pupillary dilation.	
Fig. 27	Effect of light on a case of pupillary block. Left: in	27
	lighted room condition. Right: in dark-room	
	condition.	

		1
Fig. 28	UBM images of the superior angle OD. A: Under	28
T' 20	light conditions. B: Under dark conditions	20
Fig. 29	UBM image of the inferior angle. A: light condition	28
71 00	and B: dark condition.	20
Fig. 30	UBM image of plateau iris syndrome	30
Fig. 31	UBM image of temporal quadrant in patient with	30
	plateau iris.	
Fig. 32	Radial UBM examination showing classic plateau iris	31
	appearance.	
Fig. 33	UBM image of an eye with plateau iris configuration.	31
Fig. 34	UBM showing classic pseudo plateau iris with	32
	multiple cysts visible in the iridociliary sulcus.	
Fig. 35	UBM showing classic pseudo plateau iris with	32
	multiple cysts visible in the iridociliary sulcus.	
Fig. 36	Representative UBM findings depicting the anterior	33
	chamber depth (ACD) in (A) an eye with primary	
	open-angle glaucoma (B) an eye with exfoliation	
	syndrome and occludable angles and (C) an eye with	
	exfoliation syndrome and open angles.	
Fig. 37	A large, intumescent lens.	34
Fig. 38	UBM scanning in the superior temporal area of the	35
	right eye.	
Fig. 39	UBM scanning in the temporal area of the left eye.	35
Fig. 40	Focal angle closure due to presence of iridociliary	36
	cyst.	
Fig. 41	Large iris pigment epithelial and ciliary body cysts.	36
Fig. 42	Tumors or infiltration of the iris or ciliary body	37
Fig. 43	Top: Malignant melanoma of the iris at pupil margin.	38
	Middle: Pigmented lesion of the iris in the region of	
	the angle. Bottom: Ciliary body melanoma.	
Fig. 44	Conjunctival spindle cell carcinoma.	39
Fig. 45	UBM images of malignant glaucoma.	40
Fig. 46	UBM image of the eye of a patient with	42
	spherophakia.	
Fig. 47	UBM image of the eye of a patient with trauma	42
	showing increased lenticular sphericity (arrow) in the	
	region of missing zonules.	
Fig. 48	Scleral reflectivity in cystinosis.	44
Fig. 49	Absent or narrow ciliary sulcus.	44
Fig. 50	A narrow anterior chamber angle secondary to	45
8.	anterior rotation of the ciliary body.	
Fig. 51	UBM revealing narrowing of the anterior chamber.	46
61	521210 (smill grant of the different charmon.	10

Fig. 52	UBM showing a closed anterior chamber angle	46
	secondary to anterior rotation of the CB.	
Fig. 53	UBM images of an eye with PAS.	47
Fig. 54	UBM features of ICE syndrome.	50
Fig. 55	Iridocorneal angle in patients with Cogan-Reese	51
	syndrome (A) or Chandler's syndrome (B–D).	
Fig. 56	UBM images of pigmentary glaucoma.	54
Fig. 57	Gonioscopic appearance of an eye with traumatic	55
	glaucoma.	
Fig. 58	UBM of the cyclodialysis and an angle recession.	56
Fig. 59	UBM of the anterior chamber angle after trauma.	56
Fig. 60	UBM image of Sturge-Weber syndrome.	57
Fig. 61	PACG due to pupillary blocking before and after	59
	iridectomy.	
Fig. 62	UBM image showing the iridotomy.	59
Fig. 63	UBM images of filtering bleb.	62
Fig. 64	UBM image of ciliary body region.	63
Fig. 65	UBM image of ciliary body region.	63
Fig. 66	Longitudinal UBM examination of the surgical area	66
	after DS.	
Fig. 67	Longitudinal UBM examination of the surgical area	66
71 (0	after DS.	
Fig. 68	Longitudinal UBM examination of the surgical area	67
F1 (0	after DS.	
Fig. 69	The UBM appearance of DS with RHAI 1 month	68
E: 70	postoperatively.	C 0
Fig. 70	The UBM image shows a scan parallel to the limbus,	68
Fig. 71	close to the angle of the anterior chamber.	60
Fig. 72	Supraciliary hypoechoic area.	69 71
Fig. 72	A UBM image of the site of DS with RHAI 6 months postoperatively.	/ 1
Fig. 73	A UBM image of the site of DS with RHAI 6 months	71
11g. 75	postoperatively in a patient in whom the operation	/ 1
	was unsuccessful.	
Fig. 74	A UBM image of the scleral chamber shows a fluid-	72
-	filled dark zone.	
Fig. 75	A UBM image shows that the anterior portion of the	73
	trabeculo-Descemet's membrane has become	
	adherent to peripheral cornea.	
Fig.76	UBM views of Molteno tube.	73
Fig. 77	UBM image of Ahmed valve completely occluded by	74
	iris tissue.	

Fig. 78	UBM image of Ahmed valve in the posterior	75
	chamber with iris occluding the tip.	
Fig. 79	Angular blockage secondary to the presence of	75
	neuroepithelial cysts, as well as a convex	
	arrangement of the iris root.	
Fig. 80	Image after the peripheral iridoplasty.	76
Fig. 81	UBM of eyes with congenital glaucoma.	78
Fig. 82	The anterior chamber angle in primary congenital	80
	glaucoma.	

Introduction

Ultrasound biomicroscopy [UBM] is an imaging technique that uses high frequency ultrasound to produce images of the eye at near microscopic resolution ^[1].

UBM was applied in 1988. It was originally designed to have a field of view of 2 millimeters [mm] × 2 mm and a frequency of 100 Mega Hertz [MHz]. With it the first views of enucleated eyes [unsuitable for corneal transplantation] were obtained. The results revealed fascinating details of the angle of the eye, the cornea, the sclera, the iris and the ciliary body. The visualization of Schlemm's canal at these frequencies was quite variable. Imaging provided outstanding resolution but didn't permit appreciation of larger deeper structures ^[2].

Accordingly, the next design incorporated transducers ranging from 50- 80 MHz with a field of view of 4 mm \times 4 mm. This proved to be a useful compromise that allowed all of the important structures of the anterior globe to be well visualized [3].

The first clinical images were made in 1990 using a water bath approach. Scanning was performed by placing the probe close to the area of interest and observing the resulting image on the screen. Fine movement of the probe was performed manually with reference to the screen image. The probe and preamplifier were supported by a mechanical arm assembly to help reduce motion artifacts ^[4].

UBM has been proved to be a valuable investigative tool that provides a foundation for future studies of specific glaucoma types such as open angle glaucoma [OAG] and angle closure glaucoma [ACG] which may be caused by pupillary block, plateau iris syndrome, lens induced angle closure, iris cysts and tumors, ciliary body rotation due to effusion, dark room provocative testing or malignant glaucoma ^[5, 6].

UBM helps to study the angle in great detail. The exact configuration of the iris, ciliary body and its processes can be defined. These structures can be seen in the presence of an opaque media. The angle can be quantified and the values can be followed up after treatment [7].

The UBM is the only way to fully assess the extent of the iris concavity in pigment dispersion syndrome and pigmentary glaucoma ^[8].

Unlike gonioscopy and micro endoscopy, UBM provide valuable intra-operative information about the tissue depth that the surgeon's instruments have reached and about the tissue density beyond the trabecular meshwork [TM] [9].

Precise localization of the site of blockage of failing filtering blebs facilitates slit lamp trans-conjunctival needle revision and restoration of flow in many eyes ^[10].

Aim of work

The aim of this work is to illustrate the value of UBM in diagnosis, management and follow up of glaucoma.

Chapter [1]

THE PHYSICS OF ULTRASOUND

Dr. Charles Pavlin & Prof. Stuart Foster developed the first practical UBM in the early 1990s. They developed three probes 50, 80 & 100 MHz for clinical trials ^[2-13]. The probes of 80 & 100 MHz were used to see the cornea and the anterior chamber as the depth of penetration is only 2 mm. They reached to a conclusion that a 50 MHz is an ideal compromise between depth and resolution to visualize the entire anterior segment ^[14].

Coleman, Silverman and their group at Cornell Medical College (New York, NY, USA) independently developed a UBM system emphasizing the processing of raw radiofrequency echo data acquired in sequential planes suitable for 3D analysis, especially corneal biometric analysis ^[15]. This system was also uniquely incorporated an optical subsystem for fixation, centration and display of eye position ^[16].

Basic physics of high frequency ultrasound imaging

Sound occupies the range from 10 Hertz [Hz] to 20 Kilo Hertz [KHz] of acoustic spectrum. The ultrasonic frequency occupies from 20-100 KHz. In body imaging, where significant penetration of the tissues is needed, frequencies between 3.5-5 MHz are incorporated ^[4]. These frequencies have the ability to penetrate the tissues to a depth of 15-20 centimeter [cm] and still return signals of sufficient strength to form an image. As the frequency increases, the ultrasound is more strongly attenuated, reducing penetration ^[15].

Higher frequencies (7-10MHz) can be used in imaging small parts such as visualization of the eye, where penetration of 4-5cm is sufficient [4].

The development of transducers for very high frequency ultrasound imaging was based on the polymer polyvinylidene difluoride (PVDF). These transducers were sensitive over a very broad range of frequencies [15]